Apoptosis is the programmed cell death which maintains the healthy survival/death balance in metazoan cells. Defect in apoptosis can cause cancer or autoimmunity, while enhanced apoptosis may cause degenerative diseases. The apoptotic signals contribute into safeguarding the genomic integrity while defective apoptosis may promote carcinogenesis. The apoptotic signals are complicated and they are regulated at several levels. The signals of carcinogenesis modulate the central control points of the apoptotic pathways, including inhibitor of apoptosis (IAP) proteins and FLICE-inhibitory protein (c-FLIP). The tumor cells may use some of several molecular mechanisms to suppress apoptosis and acquire resistance to apoptotic agents, for example, by the expression of antiapoptotic proteins such as Bcl-2 or by the downregulation or mutation of proapoptotic proteins such as BAX. In this review, we provide the main regulatory molecules that govern the main basic mechanisms, extrinsic and intrinsic, of apoptosis in normal cells. We discuss how carcinogenesis could be developed via defective apoptotic pathways or their convergence. We listed some molecules which could be targeted to stimulate apoptosis in different cancers. Together, we briefly discuss the development of some promising cancer treatment strategies which target apoptotic inhibitors including Bcl-2 family proteins, IAPs, and c-FLIP for apoptosis induction.
A hexanucleotide repeat expansion represents the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, though the mechanisms by which the expansion cause neurodegeneration are poorly understood. We report elevated levels of DNA/RNA hybrids (R-loops) and double-strand breaks (DSBs) in rodent neurons, human cells, and in C9orf72-ALS patient spinal cord tissues. Accumulation of endogenous DNA damage is concomitant with defective ATM-mediated DNA repair signalling and accumulation of protein-linked DNA breaks. We further reveal that defective ATM-mediated DNA repair is a consequence of p62 accumulation, which impairs H2A ubiquitylation and perturbs ATM signalling. Adeno-associated virus-mediated expression of C9orf72-related RNA and dipeptide repeats in the murine central nervous system causes elevated DSBs, ATM defects, and triggers neurodegeneration. These findings identify R-Loops, DSBs, and defective ATM-mediated repair as pathological consequences of C9orf72 expansions, and suggest that C9orf72-linked neurodegeneration is driven, at least in part, by genomic instability.
This paper describes the first threats of H5N1 avian influenza outbreaks in Egypt recorded from February to December 2006 in commercial and domestic poultry from different species and summarizes the major characteristics of the outbreak. There were 1024 cases from different poultry species (rural and commercial chickens of different breeding types, turkeys, ducks, geese, and quail) either in commercial breeding or in backyards from different locations in Egypt. All tested positive for the H5N1 subtype. From these cases only 12 avian influenza A viruses were isolated and characterized from samples collected during outbreaks. All isolates were characterized, and the data confirmed that the isolated viruses belong to highly pathogenic avian influenza of subtype H5N1. Full hemagglutinin (HA) gene (segment 4) sequencing was also done, and the sequences of these isolates were compared with other strains from Russia, Africa, and the Middle East. The data revealed that all Egyptian strains were very closely related and belonging to subclade 2.2 of the H5N1 virus of Eurasian origin, the same one circulating in the Middle East region and introduced into Africa at the beginning of 2006. This study showed evidence of the wide spread of H5N1 virus infection in domestic poultry in Egypt within a short time. The most obvious features of these outbreaks were severe clinical signs and high mortalities as well as very rapid and widespread occurrence within the country in a very short time. The possible causes of its rapid spread and prospects of disease control are discussed.
Recently, an increased incidence of outbreaks of highly pathogenic avian influenza (HPAI) H5N8 in poultry linked to infected migratory birds has been reported from different European, Asian and African countries. In Egypt, incursion of HPAI H5N8 virus of clade 2.3.4.4b has been recently registered. Full genomic characterization of 3 virus isolates from wild birds and poultry (backyard and commercial farm sectors) showed high nucleotide similarity among the HA, NA, M, and NS gene segments of the three Egyptian HPAI H5N8 viruses, indicating that they are descendants of a common ancestral virus. However, the analyzed Egyptian H5N8 viruses revealed distinct genotypes involving different origins of the PB2, PB1, PA and/or NP segments. In genotype-1 represented by strain A/common-coot/Egypt/CA285/2016 the PB2 and NP segments showed closest relationship to H5N6 and H6N2 viruses, recently detected in Italy. The second is replacement of PB1 and NP genes A novel reassortant, represented by strain A/duck/Egypt/SS19/2017, showed an exchange of PB1 and NP genes which might have originated from H6N8 or H1N1 and H6N2 viruses. Finally, replacement of PA and NP genes characterized strain A/duck/Egypt/F446/2017. Bayesian phylogeographic analyses revealed that Egyptian H5N8 viruses are highly likely derived from Russian 2016 HPAI H5N8 virus (A/great_crested_grebe/Uvs-Nuur_Lake/341/2016 (H5N8)) and the reassortment likely occurred before incursion to Egypt.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.