To better understand the ecology and epidemiology of the highly pathogenic avian infl uenza virus in its transcontinental spread, we sequenced and analyzed the complete genomes of 36 recent infl uenza A (H5N1) viruses collected from birds in Europe, northern Africa, and southeastern Asia. These sequences, among the fi rst complete genomes of infl uenza (H5N1) viruses outside Asia, clearly depict the lineages now infecting wild and domestic birds in Europe and Africa and show the relationships among these isolates and other strains affecting both birds and humans. The isolates fall into 3 distinct lineages, 1 of which contains all known non-Asian isolates. This new Euro-African lineage, which was the cause of several recent (2006) fatal human infections in Egypt and Iraq, has been introduced at least 3 times into the European-African region and has split into 3 distinct, independently evolving sublineages. One isolate provides evidence that 2 of these sublineages have recently reassorted.
This paper describes the first threats of H5N1 avian influenza outbreaks in Egypt recorded from February to December 2006 in commercial and domestic poultry from different species and summarizes the major characteristics of the outbreak. There were 1024 cases from different poultry species (rural and commercial chickens of different breeding types, turkeys, ducks, geese, and quail) either in commercial breeding or in backyards from different locations in Egypt. All tested positive for the H5N1 subtype. From these cases only 12 avian influenza A viruses were isolated and characterized from samples collected during outbreaks. All isolates were characterized, and the data confirmed that the isolated viruses belong to highly pathogenic avian influenza of subtype H5N1. Full hemagglutinin (HA) gene (segment 4) sequencing was also done, and the sequences of these isolates were compared with other strains from Russia, Africa, and the Middle East. The data revealed that all Egyptian strains were very closely related and belonging to subclade 2.2 of the H5N1 virus of Eurasian origin, the same one circulating in the Middle East region and introduced into Africa at the beginning of 2006. This study showed evidence of the wide spread of H5N1 virus infection in domestic poultry in Egypt within a short time. The most obvious features of these outbreaks were severe clinical signs and high mortalities as well as very rapid and widespread occurrence within the country in a very short time. The possible causes of its rapid spread and prospects of disease control are discussed.
Highly pathogenic avian influenza virus A/H5N1 was first officially reported in Africa in early 2006. Since the first outbreak in Nigeria, this virus spread rapidly to other African countries. From its emergence to early 2008, 11 African countries experienced A/H5N1 outbreaks in poultry and human cases were also reported in three of these countries. At present, little is known of the epidemiology and molecular evolution of A/H5N1 viruses in Africa. We have generated 494 full gene sequences from 67 African isolates and applied molecular analysis tools to a total of 1,152 A/H5N1 sequences obtained from viruses isolated in Africa, Europe and the Middle East between 2006 and early 2008. Detailed phylogenetic analyses of the 8 gene viral segments confirmed that 3 distinct sublineages were introduced, which have persisted and spread across the continent over this 2-year period. Additionally, our molecular epidemiological studies highlighted the association between genetic clustering and area of origin in a majority of cases. Molecular signatures unique to strains isolated in selected areas also gave us a clearer picture of the spread of A/H5N1 viruses across the continent. Mutations described as typical of human influenza viruses in the genes coding for internal proteins or associated with host adaptation and increased resistance to antiviral drugs have also been detected in the genes coding for transmembrane proteins. These findings raise concern for the possible human health risk presented by viruses with these genetic properties and highlight the need for increased efforts to monitor the evolution of A/H5N1 viruses across the African continent. They further stress how imperative it is to implement sustainable control strategies to improve animal and public health at a global level.
In this paper, we describe results from a high-pathogenic H5N1 avian influenza virus (AIV) surveillance program in previously H5-vaccinated commercial and family-backyard poultry flocks that was conducted from 2007 to 2008 by the Egyptian National Laboratory for Veterinary Quality Control on Poultry Production. The real-time reverse transcription PCR assay was used to detect the influenza A virus matrix gene and detection of the H5 and N1 subtypes was accomplished using a commercially available kit real-time reverse transcription PCR assay. The virus was detected in 35/3,610 (0.97%) and 27/8,682 (0.31%) of examined commercial poultry farms and 246/816 (30%) and 89/1,723 (5.2%) of backyard flocks in 2007 and 2008, respectively. Positive flocks were identified throughout the year, with the highest frequencies occurring during the winter months. Anti-H5 serum antibody titers in selected commercial poultry ranged from <2 (negative) to 9.6 log(2) when determined in the hemagglutination inhibition test using a H5 AIV antigen. In conclusion, despite the nationwide vaccination strategy of poultry in Egypt to combat H5N1 AIV, continuous circulation of the virus in vaccinated commercial and backyard poultry was reported and the efficacy of the vaccination using a challenge model with the current circulating field virus should be revised.
H5N1 highly pathogenic avian influenza virus has been endemic in poultry in Egypt since 2008, notwithstanding the implementation of mass vaccination and culling of infected birds. Extensive circulation of the virus has resulted in a progressive genetic evolution and an antigenic drift. In poultry, the occurrence of antigenic drift in avian influenza viruses is less well documented and the mechanisms remain to be clarified. To test the hypothesis that H5N1 antigenic drift is driven by mechanisms similar to type A influenza viruses in humans, we generated reassortant viruses, by reverse genetics, that harbored molecular changes identified in genetically divergent viruses circulating in the vaccinated population. Parental and reassortant phenotype viruses were antigenically analyzed by hemagglutination inhibition (HI) test and microneutralization (MN) assay. The results of the study indicate that the antigenic drift of H5N1 in poultry is driven by multiple mutations primarily occurring in major antigenic sites at the receptor binding subdomain, similarly to what has been described for human influenza H1 and H3 subtype viruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.