Drilling challenges in offshore Nile Delta have been largely documented in the literature. Operators are often confronted with drilling problems related to shale swelling, cavings, tight holes in combination with increased risks of lost circulation in some of the highly depleted formations. The Kafr El Sheikh shale in particular, has been linked to many instances of wellbore instability, due to its mineralogical composition (estimated to be mostly smectite, >70%). From offset well drilling experience, it could also be noticed that insufficient mud weight was often used to drill through the Kafr El Sheikh Shale, causing wellbore failure in shear due to lack of support of the wellbore wall. In the past, multiple mud weight designs have been implemented relying solely on pore pressure as lower bound of the mud window. With the increased use of geomechanics, it has been demonstrated that the lower bound should be taken as the maximum of the pore pressure and borehole collapse pressure, thus accounting for the effects of formation pressure, horizontal and vertical stresses, rock properties as well as wellbore trajectory. It has been proven that slight overpressure is often encountered halfway through the Kafr El Sheikh formation, which would typically result in slightly higher borehole collapse pressures. In the study fields, the operator expressed interest in drilling highly deviated wells (> 60-70 degrees). This raised concerns for increased drilling challenges, especially in the Kafr El Sheikh. A comprehensive and systematic risk assessment, design of a fit-for-purpose solution and its implementation during drilling took place in the fields of interest. Offset well data analytics from the subject fields supported a holistic evaluation of drilling risks associated with the Kafr El Sheikh, providing good understanding of stress sensitivity on deviation, azimuth and lithology. Upon building a robust geomechanical model, calibrated against offset well drilling experience, pre-drill mud weight and drilling practices recommendations were provided to optimize the drilling program. Near real-time geomechanical monitoring was implemented which helped to manage the model uncertainties. The implementation of a holistic risk assessment, including geomechanical recommendations and near real-time geomechanical monitoring, was effective to lead the drilling campaign successfully. As a result, three high angle wells (> 60-70 degrees) were drilled through the challenging Kafr El Sheikh formation without any hole instability. An integrated risk assessment of hole instability, managed in stages (pre-drill and during drilling), has helped to understand and simulate the behaviors of the formation. Proactive decisions have established a controlled drilling environment for successful operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.