Coastal communities will be more vulnerable to floods in low-lying areas and seawater inundation as the sea level rises. Users will have to take a detour to use alternate roads while the vulnerable roads are closed, increasing travel time. A large amount of literature has been focused on addressing climate change and sea-level rise impacts, vulnerability, economic evaluation, and adaptation. However, few studies have been conducted to study the impacts of population dynamics due to sea level rise within future transportation network modeling. This study aims to identify the future transportation infrastructure in the 2035 model that is vulnerable to a two-foot sea level rise in the Tampa Bay Region, Florida. The impacts of these changes have been considered within three different relocation scenarios for the affected population in the inundated zones. This analysis uses the two-foot Mean Higher High-Level water surface data and the digital elevation data provided by NOAA for 2035. The findings of this study reveal how different sea level rise scenarios could affect the future estimates of the transportation system and could potentially inform future transportation planning decisions. The analysis found that approximately 358 lane miles of highway links will be inundated. Moreover, the number of trips produced, and the amount of congestion generated with each scenario were dependent on the population and employment relocation. The key recommendation of this research is to incorporate the potential impacts of population relocation due to sea level rise into transportation modeling. Generally, different scenarios for relocating population and employment generate new traffic demands, which could result in traffic congestion. Thus, transportation planners should simulate future sea level rise scenarios and evaluate their impact on the current transportation system. Findings from this study could help transportation planners and decision-makers identify the locations and transportation facilities that are most vulnerable to rising sea levels, allowing them to make more informed decisions about adaptation planning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.