Let β be a fixed element of 𝔽q((X-1)) with polynomial part of degree ≥ 1, then any formal power series can be represented in base β, using the transformation Tβ : f ↦ {βf} of the unit disk [Formula: see text]. Any formal power series in [Formula: see text] is expanded in this way into dβ(f) = (ai(X))i≥1, where [Formula: see text]. The main aim of this paper is to characterize the formal power series β(|β| > 1), such that dβ(1) is finite, eventually periodic or automatic (such characterizations do not exist in the real case).
L'accès aux archives de la revue « Bulletin de la S. M. F. » (http: //smf.emath.fr/Publications/Bulletin/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/
The aim of this work is to prove new results on a class of digital functions with special emphasis on shifted primes as arguments. Our method lies on the estimate of exponential sums of the form n x Λ(n) exp(2iπf (n + cn) + βn) where f a digital function, c = (cn) is an almostperiodic sequence in Z and β is a real parameter, which extend the works of and to the case of the shifted prime numbers satisfying a digital constraint.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.