Vancomycin-resistant enterococci (VRE) are both of medical and public health importance associated with serious multidrug-resistant infections and persistent colonization. Enterococci are opportunistic environmental inhabitants with a remarkable adaptive capacity to evolve and transmit antimicrobial-resistant determinants. The VRE gene operons show distinct genetic variability and apparently continued evolution leading to a variety of antimicrobial resistance phenotypes and various environmental and livestock reservoirs for the most common van genes. Such complex diversity renders a number of important therapeutic options including "last resort antibiotics" ineffective and poses a particular challenge for clinical management. Enterococci resistance to glycopeptides and multidrug resistance warrants attention and continuous monitoring.
BackgroundEscherichia coli isolates of equine faecal origin were investigated for antibiotic resistance, resistance genes and their ability to perform horizontal transfer.MethodsIn total, 264 faecal samples were collected from 138 horses in hospital and community livery premises in northwest England, yielding 296 resistant E. coli isolates. Isolates were tested for susceptibility to antimicrobial drugs by disc diffusion and agar dilution methods in order to determine minimum inhibitory concentrations (MIC). PCR amplification was used to detect genes conferring resistance to: ampicillin (TEM and SHV beta-lactamase), chloramphenicol (catI, catII, catIII and cml), tetracycline (tetA, tetB, tetC, tetD, tet E and tetG), and trimethoprim (dfrA1, dfrA9, dfrA12, dfrA13, dfr7, and dfr17).ResultsThe proportion of antibiotic resistant isolates, and multidrug resistant isolates (MDR) was significantly higher in hospital samples compared to livery samples (MDR: 48% of hospital isolates; 12% of livery isolates, p < 0.001). Resistance to ciprofloxacin and florfenicol were identified mostly within the MDR phenotypes. Resistance genes included dfr, TEM beta-lactamase, tet and cat, conferring resistance to trimethoprim, ampicillin, tetracycline and chloramphenicol, respectively. Within each antimicrobial resistance group, these genes occurred at frequencies of 93% (260/279), 91%, 86.8% and 73.5%, respectively; with 115/296 (38.8%) found to be MDR isolates. Conjugation experiments were performed on selected isolates and MDR phenotypes were readily transferred.ConclusionsOur findings demonstrate that E. coli of equine faecal origin are commonly resistant to antibiotics used in human and veterinary medicine. Furthermore, our results suggest that most antibiotic resistance observed in equine E. coli is encoded by well-known and well-characterized resistant genes common to E. coli from man and domestic animals. These data support the ongoing concern about antimicrobial resistance, MDR, antimicrobial use in veterinary medicine and the zoonotic risk that horses could potentially pose to public health.
Background Infection with the human immunodeficiency virus (HIV) is an alarming problem in North African countries, but few studies have analyzed the geographical distribution of the epidemic. Libya, the second largest country in Africa and with the longest coast on the Mediterranean basin facing Europe, has experienced major outbreaks of HIV infection. Since then, no studies have followed up on the burden of HIV infections. To plan interventions and allocate resources, spatial analysis of HIV/AIDS clusters are required in order to identify epidemic foci and trends in the country. The objective of this study was to assess HIV infection clustering and trends in Libya. Methods Information on all recorded HIV/AIDS cases during 1993–2017 were extracted from the National Reporting System. A total of 8015 newly diagnosed HIV cases with address information were included. Spatial autocorrelation and spatial–temporal analysis were used to identify HIV clusters. Spatial correlations between cases and socio-demographic factors were determined using spatial regression. Results HIV cases steadily increased within the Libyan population, particularly among those aged < 27 years. Spatiotemporal analysis showed marked geographic and temporal variation of HIV infection, particularly during 2005–2012. The risk factors varied from one region to another, and the contribution of injection drug use to infection increased with time. Four clusters in three time periods were identified, three on the Mediterranean coast and one in the south. Conclusion HIV is an emerging problem in Libya, particularly among young adults. The infection rate varies greatly among the regions and districts, particularly within certain definable geographical areas. Effective intervention strategies are needed to contain HIV infections, especially within the endemic areas. Electronic supplementary material The online version of this article (10.1186/s12981-019-0228-0) contains supplementary material, which is available to authorized users.
Background: Methicillin-resistant staphylococci (MRS) are an emerging global problem with serious public health concern.Aims: This study investigated the prevalence and antimicrobial susceptibility of commensal Staphylococcus species isolated from healthy and clinical cats and dogs.Methods: Nasal swab samples were collected from animals and processed using selective and semi-selective mediums. Presumptive isolates were subjected to biochemical testing and analyzed using the Phoenix automated identification and susceptibility testing system. PCRs protocols were used to screen for mecA and pvl genes.Results: In total, 151 pets (103 cats and 48 dogs) were enrolled, of which 14 dogs (29%) and 24 cats (23%) were colonized with various Staphylococcus species mainly originated from healthy animals. A total of 38 staphylococci isolates were collected and distributed between 24 coagulase-negative and 14 coagulase-positive staphylococci. Only 13 staphylococci strains were identified as MRS, out of which only five isolates expressed that the mecA gene exclusively originated from healthy pets.Conclusion: This is the first study reporting the prevalence and colonization status of staphylococci species and MRS strains isolated from cats and dogs in Libya. The study reports important information of medical and clinical importance on antimicrobial and multidrug resistance of different staphylococci strains, particularly the coagulase negative species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.