Recently, Pulse Coupled Oscillator (PCO)-based travelling waves have attracted substantial attention by researchers in wireless sensor network (WSN) synchronization. Because WSNs are generally artificial occurrences that mimic natural phenomena, the PCO utilizes firefly synchronization of attracting mating partners for modelling the WSN. However, given that sensor nodes are unable to receive messages while transmitting data packets (due to deafness), the PCO model may not be efficient for sensor network modelling. To overcome this limitation, this paper proposed a new scheme called the Travelling Wave Pulse Coupled Oscillator (TWPCO). For this, the study used a self-organizing scheme for energy-efficient WSNs that adopted travelling wave biologically inspired network systems based on phase locking of the PCO model to counteract deafness. From the simulation, it was found that the proposed TWPCO scheme attained a steady state after a number of cycles. It also showed superior performance compared to other mechanisms, with a reduction in the total energy consumption of 25%. The results showed that the performance improved by 13% in terms of data gathering. Based on the results, the proposed scheme avoids the deafness that occurs in the transmit state in WSNs and increases the data collection throughout the transmission states in WSNs.
A protective relay performance analysis is only feasible when the hypothesis of expected relay operation characteristics as decision rules is established as the knowledge base. This has been meticulously accomplished by soliciting the relay knowledge domain from protection experts who are usually constrained by their experience and expertise. Manually analyzing an event report is also cumbersome due to the tremendous amount of data to be perused. This paper addresses these issues by intelligently divulging the knowledge hidden in the relay recorded event report using a data-mining strategy based on rough set theory and a rulequality measure under supervised learning to discover the relay decision algorithm and association rule. The high prediction accuracy rate and the close-to-unity areas under ROC curve value of the relay operating characteristic curve of the discovered relay decision algorithm verifies its generalized ability to predict trip status in an expert system of relay performance analysis. The relay association rule that was subsequently discovered by using the rule-quality analysis had also been verified as being a reliable hypothesis of the relay operation characteristics. This hypothesis helps the protection engineers understand the behavior of the distance relay. These rules would then be compared with and validated by benchmarking decision-tree-based data-mining analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.