The augmentation of lubricant oil properties is key to protecting engines, bearings, and machine parts from damage due to friction and wear and minimizing energy lost in countering friction. The tribological and rheological properties of the lubricants are of utmost importance to prevent wear under unembellished conditions. The marginal addition of particulate and filamentous nanofillers enhances these properties, making the lubricant oil stable under severe operating conditions. This research explores the improvement in SAE 5w-30 base oil performance after the addition of multiwalled carbon nanotubes (MWCNTs) in six marginal compositions, namely, Base, 0.02, 0.04, 0.06, 0.08, and 0.10 weight percentage. The effect of the addition of MWCNTs on flash and pour points, thermal conductivity, kinematic viscosity, friction coefficients, and wear are investigated and reported. X-ray diffraction and transmission electron microscopy are used to characterize the MWCNTs. The purity, crystallinity, size, shape, and orientation of the MWCNTs are confirmed by XRD and TEM characterization. Pour points and flash points increase by adding MWCNTs but inconsistency is observed after the 0.06 wt.% composition. The thermal conductivity and kinematic viscosity increase significantly and consistently. The friction coefficient and wear scar diameter reduce to 0.06 wt.% MWCNTs and then the trend is reversed due to agglomeration and inhomogeneity. A composition of 0.06 wt.% is identified as the optimum considering all the investigated properties. This composition ensures the stability of the tribo-film and hydrodynamic lubrication.
Piezoelectric energy harvesting applications have been highly impacted research area recently. Numerical investigations for bistable piezoelectric cantilevers have great importance to understand its dynamic performance. This paper aims to develop comprehensive numerical models to simulate the dynamic response of aunimorph piezoelectric bender under bistability effect for enhanced energy harvesting. To this end, the equivalent stiffness, damping, electromagnetic coupling and capacitance coefficients of a bistable piezoelectric cantilever have been numerically developed. Besides, finite element models are developed to determine the bistability repulsion force between magnets. The resulting simulations are then implemented in an electromechanical model to predict the output voltage and power over a range of load resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.