Monitoring species-specific dry herbage biomass is an important aspect of pasture-based milk production systems. Being aware of the herbage biomass in the field enables farmers to manage surpluses and deficits in herbage supply, as well as using targeted nitrogen fertilization when necessary. Deep learning for computer vision is a powerful tool in this context as it can accurately estimate the dry biomass of a herbage parcel using images of the grass canopy taken using a portable device. However, the performance of deep learning comes at the cost of an extensive, and in this case destructive, data gathering process. Since accurate speciesspecific biomass estimation is labor intensive and destructive for the herbage parcel, we propose in this paper to study low supervision approaches to dry biomass estimation using computer vision. Our contributions include: a synthetic data generation algorithm to generate data for a herbage height aware semantic segmentation task, an automatic process to label data using semantic segmentation maps, and a robust regression network trained to predict dry biomass using approximate biomass labels and a small trusted dataset with gold standard labels. We design our approach on a herbage mass estimation dataset collected in Ireland and also report state-of-the-art results on the publicly released Grass-Clover biomass estimation dataset from Denmark. Our code is available at https://git.io/J0L2a.
Herbage mass yield and composition estimation is an important tool for dairy farmers to ensure an adequate supply of high quality herbage for grazing and subsequently milk production. By accurately estimating herbage mass with a large amount of unlabeled drone images. We validate our results on a small held-out drone image test set to show the validity of our approach, which opens the way for automated dry herbage biomass monitoring www.github. com/PaulAlbert31/Clover_SSL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.