Chemical flooding is one of the most efficient methods for Enhanced Oil Recovery (EOR). This study demonstrates the efficiency of mixing different concentrations of Ionic Liquid (IL), 1-Ethyl-3-Methyl-Imidazolium Acetate ([EMIM][Ac]), with Weyburn brine to improve a medium oil recovery, Weyburn oil, from an unconsolidated sand pack sample at room conditions. Effects of Slug Size (SS), IL + brine slug initiation time, and combining IL with alkali on the Recovery Factor (RF) were investigated. This study showed that the optimum concentration of ([EMIM][AC]) was 1000 ppm and the most efficient injection time of the chemical slug was at the beginning of the flooding procedure (as secondary flooding mode). In addition, it was proved that the potential of injecting a slug of IL + brine is much better than that of introducing a slug of alkali + brine. Besides, the combination of IL and alkali (AIL) resulted in better RF than injecting either of them alone. Finally, the Surface Tension (SFT), pH, wettability alteration, and viscosity of the displacing phases were measured.
In order to improve oil recovery, Enhanced Oil Recovery (EOR) techniques have been applied to several light and medium oil reservoirs. This research was directed towards the development of chemical flooding methods for such reservoirs. The main objective of this experimental work was to investigate the efficiency of introducing various types of Ionic Liquids (ILs), 1-Ethyl-3-methylimidazolium Chloride [EMIM][Cl], 1-Benzyl-3-methylimidazolium Chloride [BenzMIM][Cl], and Trihexyltetradecylphosphonium Chloride [THTDPh][Cl] on the Recovery Factor (RF) of medium oil (Weyburn oil, 30.25 API˚) at room temperature. The series of flooding experiments were carried out by introducing a slug of IL mixtures. Results demonstrated that maximum oil recovery factor was obtained when [EMIM][Cl] was added in the displacing fluid. Further investigations have been conducted to examine the effect of ILs concentrations on the recovery mechanisms by measuring Surface Tension (SFT), pH, and viscosity of the displacing phases. Finally, the effect of theses ILs in wettability alteration was examined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.