The Earthquake can be considered as a natural phenomenon or a disaster based on the seismic response of structures during a severe earthquake that plays a vital role in the extent of structural damage and resulting injuries and losses. It is necessary to predict the performance of the existing structures and structures at the design stage when it subjected to an earthquake load. Also, it is needed to predict the repair cost required for the rehabilitation of the existing buildings that is insufficient in seismic resistance, and the construction cost and the expected repairing cost for the structures at the design stage that designed to have a ductile behavior with acceptable cracks. This study aims to propose a method for seismic performance evaluation for existing and new structures depending on the width of cracks resulted from the seismic exposure. Also, it assesses the effect of building performance during earthquakes on its life cycle cost. FEMA 356 criteria were used to predict the building responses due to seismic hazard. A case study of seven-story reinforced concrete building designed by four design approaches and then analyzed by static nonlinear pushover analysis to predict its response and performance during earthquake events using Sap 2000 software. The first design approach is to design the building to resist gravity loads only by using ECP code. The second one is to design the building to resist gravity loads and seismic loads by using static linear analysis according to ECP code. The third one is to design the building to resist gravity loads and seismic loads by using static linear analysis according to the regulations of the Egyptian Society of Earthquake Engineering (ESEE). Finally the fourth one is to design the building as the second approach but with ground acceleration greater by five times than it or by using ductility factor R = 1. The methodology followed in this study provides initial How to cite this paper: Fayed, Y., Sobaih, M.E. and El Hakem, Y.
Recently, the evaluation of seismic performance of existing buildings has received a great attention. Current research works and observations indicate that The Sudan have low-to-moderate seismic regions. Most of existing buildings are designed only for gravity load. The objective of this paper is to assess the seismic performance of existing RC buildings in The Sudan. Four typical buildings were investigated using pushover analysis according to ATC-40. They were designed according to the Regulations for earthquake-resistant design of buildings in Egypt (ESEE) and International Building Code (IBC2012). Results showed that the buildings designed considering by ESEE and IBC2012 loads were found adequate and satisfied the Immediate Occupancy (IO) acceptance criteria according to ATC-40. The comparison of the pushover curve shows that the stiffness of frames is larger when using ESEE Regulations compared to the IBC2012 design. This means that ESEE design procedure provides a greater capability to resist seismic load than the IBC2012 design.
The main objective of this paper is to evaluate the seismic response of buildings of typical reinforced concrete frames when concrete starts to deteriorate gradually and to make a comparison between the base shear and the displacement at different stages of earthquake loading. Typical 5, 15, 20 and 30-storey reinforced concrete frames have been designed for seismicity according to the recently adopted seismic code in Abu Dhabi, ACI 318-08/IBC 2009 code. A pushover analysis has been performed to these four buildings by using SAP 2000. Twenty-four models have been created (6 models for each building) by decreasing the concrete strength gradually from 4000 psi (281 kg/cm 2) to 1500 psi (105 kg/cm 2). This is to simulate the effect of harsh environment on the strength of concrete in existing buildings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.