SbstractPolylactic acid (PLA) is an attractive candidate for replacing petrochemical polymers because it is from renewable resources. In this study, a specific PLA 2002D was melt-mixed with two plasticizers: triethyl citrate (TEC) and acetyl tributyl citrate (ATBC). The plasticized PLA with various concentrations were analyzed by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), melt flow index (MFI), thermogravimetric analysis (TGA), X-ray diffraction (XRD), UV-Visible spectroscopy and plasticizer migration test. Differential scanning calorimetry demonstrated that the addition of TEC and ATBC resulted in a decrease in glass transition temperature (T g ), and the reduction was the largest with the plasticizer having the lowest molecular weight (TEC). Plasticizing effect was also shown by decrease in the dynamic storage modulus and viscosity of plasticized mixtures compared to the treated PLA. The TGA results indicated that ATBC and TEC promoted a decrease in thermal stability of the PLA. The X-ray diffraction showed that the PLA have not polymorphic crystalline transition. Analysis by UV-Visible spectroscopy showed that the two plasticizers: ATBC and TEC have no effect on the color change of the films. The weight loss plasticizer with heating time and at 100°C is lesser than at 135 °C. Migration of TEC and ATBC results in cracks and changed color of material. We have concluded that the higher molecular weight of citrate in the studied exhibited a greater plasticizing effect to the PLA.
Epoxidized soybean oil (ESBO), is one of the most commonly used epoxides because of its typical combined roles as a plasticizer and heat stabilizer. In this study, a novel plasticizer of poly(vinyl chloride) (PVC) resins, epoxidized sunflower oil (ESO), was synthesized, and its performance was evaluated. ESO was designed to act as a coplasticizer and a heat stabilizer like ESBO. ESO is used as organic coplasticizer for plasticized PVC containing Ca and Zn stearates as primary stabilizers and stearic acid as lubricant. Di-(2-ethylhexyl) phthalate (DEHP), a conventional plasticizer for PVC, was partially replaced by ESO. Mechanical properties (tensile and shore D hardness) were investigated. The performance of ESO to ESB0 (20 g) for comparison, indicated that ESO could be used as secondary plasticizer for PVC in combination with DEHP. All mechanical and dynamical properties of plasticized PVC sheets varied with the oxirane oxygen of the ESO.
AbstractTriethyl citrate (TEC) and acetyl tributyl citrate (ATBC) were used as plasticizer for poly(lactic acid) (PLA). The treated and plasticized PLA at various concentrations were analyzed by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and opacity. DSC was used to evaluate the crystallinity and thermal property of all the samples. It was found that the glass transition temperature (Tg) and the melting temperature (Tm) decreased as the amount of citrate esters increased. Additionally, the presence of TEC or ATBC tended to increase the crystallinity of PLA. This result was supported by XRD. DMA of plasticized PLA indicates that a decrease in Tg is obtained with increasing plasticizer content. FTIR spectra indicate that there are some molecular interactions by intermolecular hydrogen bonds between PLA and citrate esters. The effect of the concentration of plasticizer on the opacity of the films was negligible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.