The condition monitoring and multi-fault diagnosis of rolling bearing is a very important research content in the field of the rotating machinery health management. Most researches widely used empirical mode decomposition in tandem with principal component analysis which is applied for feature extraction. But this method may lead to imprecise classification. In this paper, we propose a new method of rolling bearing multi-fault diagnosis, by combining the fuzzy entropy of empirical mode decomposition, principal component analysis, and self-organizing map neural network. The empirical mode decomposition process allows the vibration signal to be decomposed into a series of intrinsic mode functions. For each intrinsic mode function, we obtained the fault feature information. The proposed approach combines the fuzzy function and sample entropy to obtain fuzzy entropy. By this combination, we can reflect the complexity and the irregularity in each intrinsic mode function component. The fuzzy entropy of empirical mode decomposition used to construct the vectors is defined as the input of the principal component analysis. This principal component analysis is used to reduce the dimension of the feature vectors. Finally, the reduced feature vectors are chosen as input of self-organizing map network for automatic fault diagnosis and fault classification. The obtained results show that the proposed approach makes it possible to correctly assess the degradation of rolling bearing and to obtain recognition of high-sensitivity defects for different types of bearing faults.
Nowadays, multi-fault diagnosis has become the most interesting topic for researchers, since it has lately attracted a substantial attention. The most published works recently have considered defects detection, identification, and classification as the toughest challenge for rotating machinery monitoring. As feature extraction requires robust techniques for online inspection with a high level of expertise to make automatic decisions on the running machine health status, a robust approach is required to adjust the misclassification of the extracted features, especially under various working conditions. In this paper, we propose the combination of two Time Domain Features (TDFs) in tandem with Singular Value Decomposition (SVD) and Fuzzy Logic System (FLS) to build an enhanced fault diagnosis technique for rolling bearing. The original vibration signal is divided first into several data samples. Thereafter, TDFs are applied on each sample to construct a feature matrix during the feature extraction step. Afterwards, SVD is performed on the obtained matrices in order to reduce their dimension and select the most stable vectors (singular values). Finally, FLS is employed as a powerful tool for automatic feature classification. Experimental results confirm that our suggested approach can enhance the ability to assess the degradation of bearing faults with a higher recognition sensitivity even under different working conditions.
Bearings are massively utilized in industries of nowadays due to their huge importance. Nevertheless, their defects can heavily affect the machines performance. Therefore, many researchers are working on bearing fault detection and classification; however, most of the works are carried out under constant speed conditions, while bearings usually operate under varying speed conditions making the task more challenging. In this paper, we propose a new method for bearing condition monitoring under time-varying speed that is able to detect the fault efficiently from the vibration signatures. First, the vibration signal is processed with the Empirical Wavelet Transform to extract the AM-FM modes. Next, time domain features are calculated from each mode. Then, the features’ set is reduced using the Cultural Clan-based optimization algorithm by removing the redundant and unimportant parameters that may mislead the classification. Finally, an ensemble learning algorithm “Random Forest” is used to train a model able to classify the fault based on the selected features. The proposed method was tested on a time-varying real dataset consisting of three different bearing health states: healthy, outer race defect, and inner race defect. The obtained results indicate the ability of our proposed method to handle the speed variability issue in bearing fault detection with high efficiency.
Condition monitoring and fault diagnosis play the most important role in industrial applications. The gearbox system is an essential component of mechanical system in fault identification and classification domains. In this paper, we propose a new technique which is based on the Fast-Kurtogram method and Self Organizing Map (SOM) neural network to automatically diagnose two localized gear tooth faults: a pitting and a crack. These faults could have very different diagnostics; however, the existing diagnostic techniques only indicate the presence of local tooth faults without being able to differentiate between a pitting and a crack. With the aim to automatically diagnose these two faults, a dynamic model of an electromechanical system which is a simple stage gearbox with and without defect driven by a three phase induction machine is proposed, which makes it possible to simulate the effect of pitting and crack faults on the induction stator current signal. The simulated motor current signal is then analyzed by using a Fast-Kurtogram method. Self-organizing map (SOM) neural network is subsequently used to develop an automatic diagnostic system. This method is suitable for differentiating between a pitting and a crack fault.
Condition monitoring of electrical systems is vital in reducing maintenance costs and enhancing their reliability. By focusing on the monitoring of electrical transformers, which play a crucial role in electrical systems and are the main equipment for electrical transmission and distribution, drastic damages, undesirable loss of power and expensive curative maintenance could be avoided. In this paper, a novel noncontact and non-intrusive framework experimental method is used for the monitoring and the diagnosis of transformer faults based on an infrared thermography technique (IRT). The basic structure of this work begins with applying (IRT) to obtain a thermograph of the considered machine. Second, GIST features of the reference image and all images in the image database are extracted. At last, various faults patterns in the transformer are automatically identified using a machine learning method called Support Vector Machine (SVM). The proposed method effectiveness and capacity are evaluated based on the experimental infrared thermography (IRT) images and the diagnosis results by identifying nine sorts of electrical transformer states among which one is healthy and the remaining eight are of short circuit faults in common core winding type, and showing that it can be considered as a powerful diagnostic tool with high Classification Accuracy (CA) and stability compared to other previously used methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.