Bearings are massively utilized in industries of nowadays due to their huge importance. Nevertheless, their defects can heavily affect the machines performance. Therefore, many researchers are working on bearing fault detection and classification; however, most of the works are carried out under constant speed conditions, while bearings usually operate under varying speed conditions making the task more challenging. In this paper, we propose a new method for bearing condition monitoring under time-varying speed that is able to detect the fault efficiently from the vibration signatures. First, the vibration signal is processed with the Empirical Wavelet Transform to extract the AM-FM modes. Next, time domain features are calculated from each mode. Then, the features’ set is reduced using the Cultural Clan-based optimization algorithm by removing the redundant and unimportant parameters that may mislead the classification. Finally, an ensemble learning algorithm “Random Forest” is used to train a model able to classify the fault based on the selected features. The proposed method was tested on a time-varying real dataset consisting of three different bearing health states: healthy, outer race defect, and inner race defect. The obtained results indicate the ability of our proposed method to handle the speed variability issue in bearing fault detection with high efficiency.
The precise identification of faults is vital for ensuring the reliability of the bearing’s performance, and thus, the functionality of rotary machinery. The focus of our study is on the role that feature selection plays in improving the accuracy of predictive models used for diagnosis. The study combined the Standard Deviation (STD) parameter with the Random Forest (RF) classifier to select relevant features from vibration signals obtained from bearings operating under various conditions. We utilized three databases with different bearings’ health states operating under distinct conditions. The results of the study were promising, indicating that the proposed method was not only effective but also consistent, even under time-varying conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.