User profile learning, such as mobility and demographic profile learning, is of great importance to various applications. Meanwhile, the rapid growth of multiple social platforms makes it possible to perform a comprehensive user profile learning from different views. However, the research efforts on user profile learning from multiple data sources are still relatively sparse, and there is no large-scale dataset released towards user profile learning. In our study, we contribute such benchmark and perform an initial study on user mobility and demographic profile learning. First, we constructed and released a large-scale multi-source multimodal dataset from three geographical areas. We then applied our proposed ensemble model on this dataset to learn user profile. Based on our experimental results, we observed that multiple data sources mutually complement each other and their appropriate fusion boosts the user profiling performance.
Internal combustion (IC) engines are optimized to meet exhaust emission requirements with the best fuel economy. Closed loop combustion control is a key technology that is used to optimize the engine combustion process to achieve this goal. In order to conduct research in the area of closed loop combustion control, a control oriented cycle-to-cycle engine model, containing engine combustion information for each individual engine cycle as a function of engine cran k angle, is a necessity. This research aims to design a new methodology to fix the fuel rat io in internal co mbustion (IC) engine. Baseline method is a linear methodology which can be used for highly nonlinear system's (e.g., IC engine). To optimize this method, new linear part sliding mode method (NLPSM) is used. This online optimizer can adjust the optimal coefficient to have the best performance.
This paper expands a Multi Input Multi Output (MIMO) fuzzy baseline variable structure control (VSC) which controller coefficient is off-line tuned by gradient descent algorithm. The main goal is to adjust the optimal value for fuel ratio (FR) in motor engine. The fuzzy inference system in proposed methodology is works based on Mamdani-Lyapunov fuzzy inference system (FIS). To reduce dependence on the gain updating factor coefficients of the fuzzy methodology, PID baseline method is introduced. This new method provides an optimal setting for other factors which crated by PID baseline method. The gradient descent methodology is off-line tune all coefficients of baseline fuzzy and variable structure function based on mathematical optimization methodology. The performance of proposed methodology is validated through comparison with fuzzy variable structure methodology (FVSC). Simulation results signify good performance of fuel ratio in presence of different torque load and external disturbance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.