User profile learning, such as mobility and demographic profile learning, is of great importance to various applications. Meanwhile, the rapid growth of multiple social platforms makes it possible to perform a comprehensive user profile learning from different views. However, the research efforts on user profile learning from multiple data sources are still relatively sparse, and there is no large-scale dataset released towards user profile learning. In our study, we contribute such benchmark and perform an initial study on user mobility and demographic profile learning. First, we constructed and released a large-scale multi-source multimodal dataset from three geographical areas. We then applied our proposed ensemble model on this dataset to learn user profile. Based on our experimental results, we observed that multiple data sources mutually complement each other and their appropriate fusion boosts the user profiling performance.
The rapid spread of the Coronavirus 2019 disease had drastically impacted life all over the world. While some economies are actively recovering from this pestilence, others are experiencing fast and consistent disease spread, compelling governments to impose social distancing measures that have put a halt on routines, especially in densely-populated areas.Aiming at bringing more light on key economic and public health factors affecting the disease spread, this initial study utilizes a quantitative statistical analysis based on the most recent publicly-available COVID-19 datasets.The study had shown and explained multiple significant relationships between the COVID-19 data and other country-level statistics. We have also identified and statistically profiled four major country-level clusters with relation to different aspects of COVID-19 development and country-level economic and health indicators.Specifically, this study has identified potential COVID-19 under-reporting traits as well as various economic factors that impact COVID-19 Diagnosis, Reporting, and Treatment. Based on the country clusters, we have also described the four disease development scenarios, which are tightly knit to country-level economic and public health factors. Finally, we have highlighted the potential Email addresses: farseev@itmo.ru (Aleksandr Farseev),
Wellness is a widely popular concept that is commonly applied to fitness and self-help products or services. Inference of personal wellness-related attributes, such as body mass index or diseases tendency, as well as understanding of global dependencies between wellness attributes and users' behavior is of crucial importance to various applications in personal and public wellness domains. Meanwhile, the emergence of social media platforms and wearable sensors makes it feasible to perform wellness profiling for users from multiple perspectives. However, research efforts on wellness profiling and integration of social media and sensor data are relatively sparse, and this study represents one of the first attempts in this direction. Specifically, to infer personal wellness attributes, we proposed multi-source individual user profile learning framework named "TweetFit". "TweetFit" can handle data incompleteness and perform wellness attributes inference from sensor and social media data simultaneously. Our experimental results show that the integration of the data from sensors and multiple social media sources can substantially boost the wellness profiling performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.