The time-series forecasting is a vital area that motivates continuous investigate areas of intrigued for different applications. A critical step for the time-series forecasting is the right determination of the number of past observations (lags). This paper investigates the forecasting accuracy based on the selection of an appropriate time-lag value by applying a comparative study between three methods. These methods include a statistical approach using auto correlation function, a well-known machine learning technique namely Long Short-Term Memory (LSTM) along with a heuristic algorithm to optimize the choosing of time-lag value, and a parallel implementation of LSTM that dynamically choose the best prediction based on the optimal time-lag value. The methods were applied to an experimental data set, which consists of five meteorological parameters and aerosol particle number concentration. The performance metrics were: Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE) and R-squared. The investigation demonstrated that the proposed LSTM model with heuristic algorithm is the superior method in identifying the best time-lag value.
Three simple approaches to forecast the COVID-19 epidemic in Jordan were previously proposed by Hussein, et al.: a short-term forecast (STF) based on a linear forecast model with a learning database on the reported cases in the previous 5–40 days, a long-term forecast (LTF) based on a mathematical formula that describes the COVID-19 pandemic situation, and a hybrid forecast (HF), which merges the STF and the LTF models. With the emergence of the OMICRON variant, the LTF failed to forecast the pandemic due to vital reasons related to the infection rate and the speed of the OMICRON variant, which is faster than the previous variants. However, the STF remained suitable for the sudden changes in epi curves because these simple models learn for the previous data of reported cases. In this study, we revisited these models by introducing a simple modification for the LTF and the HF model in order to better forecast the COVID-19 pandemic by considering the OMICRON variant. As another approach, we also tested a time-delay neural network (TDNN) to model the dataset. Interestingly, the new modification was to reuse the same function previously used in the LTF model after changing some parameters related to shift and time-lag. Surprisingly, the mathematical function type was still valid, suggesting this is the best one to be used for such pandemic situations of the same virus family. The TDNN was data-driven, and it was robust and successful in capturing the sudden change in +qPCR cases before and after of emergence of the OMICRON variant.
The sudden explosion of the COVID-19 pandemic shows the limitations of the existing healthcare system in handling health emergencies. Innovative technologies like blockchain can play an important role in effective planning operations for fighting coronavirus pandemic. Blockchain can provide solutions that ensure safe and reliable medical supply chain with a secure data management health system. In this paper, we present an extensive review on the use of blockchain technology to mitigate COVID-19 pandemic. The research papers are classified into two groups: proposer work with implementations and surveyed papers. Both are analyzed and summarized. Then, we discussed the importance of applying blockchain technology for the COVID-19 pandemic. Finally, the challenging and future research directions are identified to motivate researchers for more efforts in this domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.