This paper presents the development of air quality low-cost sensors (LCS) with improved accuracy features. The LCS features integrate machine learning based calibration models and virtual sensors. LCS performances are analyzed and some LCS variables with low performance are improved through intelligent field-calibrations. Meteorological variables are calibrated using linear dynamic models. While, due to the non-linear relationship to reference instruments, fine particulate matter (PM2.5) are calibrated using non-linear machine learning models. However, due to sensor drifts or faults, carbon dioxide (CO2) does not present correlation to reference instrument. As a result, the LCS for CO2 is not feasible to be calibrated. Hence, to estimate the CO2 concentration, mathematical models are developed to be integrated in the calibrated LCS, known as a virtual sensor. In addition, another virtual sensor is developed to demonstrate the capability of estimating air pollutant concentrations, e.g. black carbon, when the physical sensor devices are not available. In our paper, calibration models and virtual sensors are established using corresponding reference instruments that are installed on two reference stations. This strategy generalizes the models of calibration and virtual sensing which then allows LCS to be deployed in field independently with a high accuracy. Our proposed methodology enables scaling-up accurate air pollution mapping appropriate for smart cities.
In this study, we proposed three simple approaches to forecast COVID-19 reported cases in a Middle Eastern society (Jordan). The first approach was a short-term forecast (STF) model based on a linear forecast model using the previous days as a learning data-base for forecasting. The second approach was a long-term forecast (LTF) model based on a mathematical formula that best described the current pandemic situation in Jordan. Both approaches can be seen as complementary: the STF can cope with sudden daily changes in the pandemic whereas the LTF can be utilized to predict the upcoming waves’ occurrence and strength. As such, the third approach was a hybrid forecast (HF) model merging both the STF and the LTF models. The HF was shown to be an efficient forecast model with excellent accuracy. It is evident that the decision to enforce the curfew at an early stage followed by the planned lockdown has been effective in eliminating a serious wave in April 2020. Vaccination has been effective in combating COVID-19 by reducing infection rates. Based on the forecasting results, there is some possibility that Jordan may face a third wave of the pandemic during the Summer of 2021.
Abstract. In this study, we present results from 12 years of black carbon (BC) measurements at 14 sites around the Helsinki metropolitan area (HMA) and at one background site outside the HMA. The main local sources of BC in the HMA are traffic and residential wood combustion in fireplaces and sauna stoves. All BC measurements were conducted optically, and therefore we refer to the measured BC as equivalent BC (eBC). Measurement stations were located in different environments that represented traffic environment, detached housing area, urban background, and regional background. The measurements of eBC were conducted from 2007 through 2018; however, the times and the lengths of the time series varied at each site. The largest annual mean eBC concentrations were measured at the traffic sites (from 0.67 to 2.64 µg m−3) and the lowest at the regional background sites (from 0.16 to 0.48 µg m−3). The annual mean eBC concentrations at the detached housing and urban background sites varied from 0.64 to 0.80 µg m−3 and from 0.42 to 0.68 µg m−3, respectively. The clearest seasonal variation was observed at the detached housing sites where residential wood combustion increased the eBC concentrations during the cold season. Diurnal variation in eBC concentration in different urban environments depended clearly on the local sources that were traffic and residential wood combustion. The dependency was not as clear for the typically measured air quality parameters, which were here NOx concentration and mass concentration of particles smaller that 2.5 µm in diameter (PM2.5). At four sites which had at least a 4-year-long time series available, the eBC concentrations had statistically significant decreasing trends that varied from −10.4 % yr−1 to −5.9 % yr−1. Compared to trends determined at urban and regional background sites, the absolute trends decreased fastest at traffic sites, especially during the morning rush hour. Relative long-term trends in eBC and NOx were similar, and their concentrations decreased more rapidly than that of PM2.5. The results indicated that especially emissions from traffic have decreased in the HMA during the last decade. This shows that air pollution control, new emission standards, and a newer fleet of vehicles had an effect on air quality.
Air pollution is a major problem in urban areas, where high population density is accompanied with excess anthropomorphic emissions impacting the environment and increasing health effects. Highly accurate air quality monitoring stations have been used to monitor the severity of the problem and warn citizens. However, air quality can vary sharply even within the same city block, and pollution exposure can vary even 30% between individuals living in the same residence. Therefore, a dense deployment of air quality sensors is needed to detect these variations, and protect citizens from overexposure. Low-cost air quality sensors make it possible to densely instrument a city and detect hot spots as they happen. However, thus far limited information exists on their accuracy and practicability. In this paper, we conduct a 44 day measurement campaign to assess performance of low-cost air quality monitors under different environmental conditions. As practical use case we consider pollution hot spot detection. Our results show that the mean error of low-cost sensors is small, but the variation in error is significantly larger than with reference sensors. We also show that the accuracy is sufficient for applications relying on variations in air quality index values, such as hotspot detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.