Drought hazard is one of the main hindrances for sustaining food security in Bangladesh, and climate change may exacerbate it in the next several decades. This study aims to evaluate drought hazard at current and future climate change conditions in theBoropaddy cultivated areas of western Bangladesh using simulated climate data from the outputs of three global climate models (GCMs) based on the SRES A1B scenario for the period between 2041 and 2070. The threshold level of Standardized Precipitation Evapotranspiration Index (SPEI) was employed to identify drought events and its probability distribution function (PDF) was applied to create the drought hazard index. The study demonstrates that enhancement of potential evapotranspiration (PET) will surpass that of precipitation, resulting in intensified drought events in future. In addition, the PDFs of drought events will move the upper tail in future period compared to the baseline. The results showed that the southwestern region was more severe to the drought hazard than the northwestern region during the period of 1984 to 2013. From the results of three GCMs, in the mid-century period, drought hazard will slightly increase in the northwestern region and flatten with a decrease in the southwestern region. The outcomes will help to allocate agricultural adaptation plans under climate change condition in Bangladesh.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.