The BioMart Community Portal (www.biomart.org) is a community-driven effort to provide a unified interface to biomedical databases that are distributed worldwide. The portal provides access to numerous database projects supported by 30 scientific organizations. It includes over 800 different biological datasets spanning genomics, proteomics, model organisms, cancer data, ontology information and more. All resources available through the portal are independently administered and funded by their host organizations. The BioMart data federation technology provides a unified interface to all the available data. The latest version of the portal comes with many new databases that have been created by our ever-growing community. It also comes with better support and extensibility for data analysis and visualization tools. A new addition to our toolbox, the enrichment analysis tool is now accessible through graphical and web service interface. The BioMart community portal averages over one million requests per day. Building on this level of service and the wealth of information that has become available, the BioMart Community Portal has introduced a new, more scalable and cheaper alternative to the large data stores maintained by specialized organizations.
The integration of new technologies in the classrooms opens new possibilities for the teaching and learning process. Technologies such as student response system (e.g. Clicker) are getting popularity among teachers due to its effects on student learning performance. In this study, our primary objective is to investigate the effect of Socrative with combination of smartphones on student learning performance. We also observed the benefits of interactivity between the teacher and the students and among classmates, which positively influences collaborative learning and engagement of students in the class. We test these relationships experimentally in a community college class environment using data from a survey answered by students in information technology associate degree. The results of our study reveal that collaborative learning and engagement of student in the class improves student learning performance. We highly recommend these tools in educational settings to support the learning process.
Bounded Model Checking, although complete in theory, has been thus far limited in practice to falsification of properties that were not invariants. In this paper we propose a termination criterion for all of LTL, and we show its effectiveness through experiments. Our approach is based on converting the LTL formula to a Büchi automaton so as to reduce model checking to the verification of a fairness constraint. This reduction leads to one termination criterion that applies to all formulae. We also discuss cases for which a dedicated termination test improves bounded model checking efficiency.
The present paper investigates the current status of the storage times in self-organized QDs, surveying a variety of heterostructures advantageous for strong electron and/or hole confinement. Experimental data for the electronic properties, such as localization energies and capture cross-sections, are listed. Based on the theory of thermal emission of carriers from QDs, we extrapolate the values for materials that would increase the storage time at room temperature to more than millions of years. For electron storage, GaSb/AlSb, GaN/AlN, and InAs/AlSb are proposed. For hole storage, GaSb/Al0.9Ga0.1As, GaSb/GaP, and GaSb/AlP are promising candidates.
Advanced technology helps educational institutes to improve student learning performance and outcomes. In this study, our aim is to measure and assess student engagement and collaborative learning in engineering classes when using online technology in solving physics problems. The interactive response system used in this study is a collaborative learning tool that allows teachers to monitor their students' response and progress in real time. Our results indicated that students have highly positive attitude toward using the interactive response system as a tool in education in order to improve collaborative learning and student engagement in classes. Consequently, student-learning performance has been improved considerably, and technology was successfully incorporated in engineering classes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.