Mutual information (MI) can be viewed as a measure of multivariate association in a random vector. However, the estimation of MI is difficult since the estimation of the joint probability density function (PDF) of non Gaussian distributed data is a hard problem. Copula function is an appropriate tool for estimating MI since the joint probability density function ofrandom variables can be expressed as the product of the associated copula density function and marginal PDF’s. With a little search, we find that the proposed copulas-based mutual information is much more accurate than conventional methods such as the joint histogram and Parzen window-based MI. In this paper, by using the copulas-based method, we compute MI forsome family of bivariate distribution functions and study the relationship between Kendall’s tau correlation and MI of bivariate distributions. Finally, using a real dataset, we illustrate the efficiency of this approach.
Determining the extent of a disparity, if any, between groups of people, for example, race or gender, is of interest in many fields, including public health for medical treatment and prevention of disease or in discrimination cases concerning equal pay to estimate the pay disparities between minority and majority employees. An observed difference in the mean outcome between a majority/advantaged group (AG) and minority/disadvantaged group (DG) can be due to differences in the distribution of relevant covariates. The Peters Belson (PB) method fits a regression model with covariates to the AG to predict, for each DG member, their outcome measure as if they had been from the AG. The difference between the mean predicted and the mean observed outcomes of DG members is the (unexplained) disparity of interest. PB regression is a form of statistical matching, akin in spirit to Bhattacharya's band-width matching. In this paper we review the use of PB regression in legal cases from Hikawa et al. (2010b) Parametric and nonparametric approaches to PB regression are described and we show that in nonparametric PB regression choose a kernel function can be better resulted, i.e. by selecting the appropriate kernel function we can reduce bias and variance of estimators, also increase power of test.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.