Tissue restoration is the process whereby multiple damaged cell types are replaced to restore the histoarchitecture and function to the tissue. Several theories have been proposed to explain the phenomenon of tissue restoration in amphibians and in animals belonging to higher orders. These theories include dedifferentiation of damaged tissues, transdifferentiation of lineage-committed progenitor cells, and activation of reserve precursor cells. Studies by Young et al. and others demonstrated that connective tissue compartments throughout postnatal individuals contain reserve precursor cells. Subsequent repetitive single cell-cloning and cell-sorting studies revealed that these reserve precursor cells consisted of multiple populations of cells, including tissue-specific progenitor cells, germ-layer lineage stem cells, and pluripotent stem cells. Tissue-specific progenitor cells display various capacities for differentiation, ranging from unipotency (forming a single cell type) to multipotency (forming multiple cell types). However, all progenitor cells demonstrate a finite life span of 50 to 70 population doublings before programmed cell senescence and cell death occurs. Germ-layer lineage stem cells can form a wider range of cell types than a progenitor cell. An individual germ-layer lineage stem cell can form all cells types within its respective germ-layer lineage (i.e., ectoderm, mesoderm, or endoderm). Pluripotent stem cells can form a wider range of cell types than a single germ-layer lineage stem cell. A single pluripotent stem cell can form cells belonging to all three germ layer lineages. Both germ-layer lineage stem cells and pluripotent stem cells exhibit extended capabilities for self-renewal, far surpassing the limited life span of progenitor cells (50-70 population doublings). The authors propose that the activation of quiescent tissue-specific progenitor cells, germ-layer lineage stem cells, and/or pluripotent stem cells may be a potential explanation, along with dedifferentiation and transdifferentiation, for the process of tissue restoration. Several model systems are currently being investigated to determine the possibilities of using these adult quiescent reserve precursor cells for tissue engineering.
Lineage uncommitted pluripotent stem cells reside in the connective tissue of skeletal muscle. The present study was carried out with pluripotent stem cells (PPSCs) isolated from 6‐month old rat muscle. Before differentiation, these cells were vimentin+, CD90+, CD45−, and varied in their expression of CD34. The PPSCs were expanded as non‐adherent aggregates under similar conditions to those used to generate neurospheres from embryonic or neural stem cells. The PPSC‐derived neurospheres were positive for nestin, an early marker present in neuronal precursors, and expressed the two alternative mRNA forms of the neuroectodermal marker Pax‐6, as well as mRNA for Oct‐4, a gene related to the pluripotentiality of stem cells. To confirm their neural potential, PPSC‐derived neurospheres were plated on coated coverslips under varying conditions: Neurobasal medium with N2 or B27, and either NT3 or BDNF. After 4–6 days the cells expressed neuronal (Tuj1+, NF68), astrocytic (GFAP) and oligodendrocytic (MOSP+, MBP+) markers, both by immunocytochemistry and RT‐PCR. In addition, PPSCs were cultured as monolayers under adherent conditions, exposed to growth factors and defined differentiating conditions for 5 hr, and subsequently kept for 2 days in a maturation medium. At this point they gave rise to a mixed population of early neural progenitors (Nestin+ or NG2+), immature and mature neurons (Tuj1+ and NF145+) and myelin producing oligodendrocytes (CNPase + and MOSP+). Our study shows that PPSCs present in adult muscle can overcome germ lineage restrictions and express the molecular characteristics of brain cells. Therefore, PPSCs isolated from adult muscle could provide a novel source for autologous cell replacement in neurodegenerative and demyelinating diseases. © 2002 Wiley‐Liss, Inc.
Inflammation is initiated as a protective response by the host, but can often result in systemic pathology. Among cells of the immune system, T lymphocytes play a major role in the inflammatory response. T cell inflammation is characterised histologically by an infiltration of mononuclear cells. Key regulators of this response are a subset of T lymphocytes called T helper (Th) cells. These cells secrete soluble mediators called cytokines, which orchestrate the immune response. The appropriate regulation of Th cell immunity is critical in the control and prevention of diverse disease states. This review will focus on the role of Th cells in the inflammatory process involved in allergic disease, diabetes, infectious disease, rheumatoid arthritis, heart disease, multiple sclerosis and cancer. In the area of autoimmunity, in particular, a basic understanding of Th cells and cytokines has contributed to the development of clinically efficacious biological agents. This review also examines current and novel treatment strategies under investigation at present that regulate Th cell immunity, which may result in better treatments for immune-mediated diseases.
Nothing more dramatically captures the imagination of the visually impaired patient or the ophthalmologist treating them than the possibility of rebuilding a damaged retina or vasculature with "stem cells." Stem cells (SC) have been isolated from adult tissues and represent a pool of cells that may serve to facilitate rescue/repair of damaged tissue following injury or stress. We propose a new paradigm to "mature" otherwise immature neovasculature or, better yet, stabilize existing vasculature to hypoxic damage. This may be possible through the use of autologous bone marrow (BM) or cord blood derived hematopoietic SC that selectively target sites of neovascularization and gliosis where they provide vasculo- and neurotrophic effects. We have demonstrated that adult BM contains a population of endothelial and myeloid progenitor cells that can target activated astrocytes, a hallmark of many ocular diseases, and participate in normal developmental, or injury-induced, angiogenesis in the adult. Intravitreal injection of these cells from mice and humans can prevent retinal vascular degeneration ordinarily observed in mouse models of retinal degeneration; this vascular rescue correlates with functional neuronal rescue as well. The use of autologous adult BM derived SC grafts for the treatment of retinal vascular and degenerative diseases represents a novel conceptual approach that may make it possible to "mature" otherwise immature neovasculature, stabilize existing vasculature to hypoxic damage and/or rescue and protect retinal neurons from undergoing apoptosis. Such a therapeutic approach would obviate the need to employ destructive treatment modalities and would facilitate vascularization of ischemic and otherwise damaged retinal tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.