In this article, we propose a new method that determines an efficient numerical procedure for solving second-order fuzzy Volterra integro-differential equations in a Hilbert space. This method illustrates the ability of the reproducing kernel concept of the Hilbert space to approximate the solutions of second-order fuzzy Volterra integro-differential equations. Additionally, we discuss and derive the exact and approximate solutions in the form of Fourier series with effortlessly computable terms in the reproducing kernel Hilbert space W 3 2 [a, b] ⊕ W .3 2 [a, b]. The convergence of the method is proven and its exactness is illustrated by three numerical examples.
The Duhem model, widely used in structural, electrical, and mechanical engineering, gives an analytical description of a smooth hysteretic behavior. In practice, the Duhem model is mostly used within the following black-box approach: given a set of experimental input-output data, how to tune the model so that its output matches the experimental data. It may happen that a Duhem model presents a good match with the experimental real data for a specific input but does not necessarily keep significant physical properties which are inherent to the real data, independent of the exciting input. This paper presents a characterization of different classes of Duhem models in terms of their consistency with the hysteresis behavior. * −,
When a nonlinear system has a strict Lyapunov function, its stability can be studied using standard tools from Lyapunov stability theory. What happens when the strict condition fails? This paper provides an answer to that question using a formulation that does not make use of the specific structure of the system model. This formulation is then applied to the study of the asymptotic stability of some classes of linear and nonlinear time-varying systems. Lyapunov functions, time-varying systems, (asymptotic) stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.