In this study, we present a new analytical numerical technique for solving a class of time Fractional Differential Equations (FDEs) with variable coefficients based on the generalized Taylor series formula in the Caputo sense. This method provided the solution in the form of a rapidly convergent power series under a multiple fractional differentiability with easily computable components. An efficacious experiment is given to guarantee the procedure, to illustrate the theoretical statements of the present technique and to show its potentiality, generality and superiority for solving wide range of FDEs. The results reveal that the method is easy to implement, very effective, fully compatible with the complexity of such problems, straightforward and simple.
We present an efficient modern strategy for solving some well-known classes of uncertain integral equations arising in engineering and physics fields. The solution methodology is based on generating an orthogonal basis upon the obtained kernel function in the Hilbert spaceW21a,bin order to formulate the analytical solutions in a rapidly convergent series form in terms of theirα-cut representation. The approximation solution is expressed byn-term summation of reproducing kernel functions and it is convergent to the analytical solution. Our investigations indicate that there is excellent agreement between the numerical results and the RKHS method, which is applied to some computational experiments to demonstrate the validity, performance, and superiority of the method. The present work shows the potential of the RKHS technique in solving such uncertain integral equations.
In this article, we propose a new method that determines an efficient numerical procedure for solving second-order fuzzy Volterra integro-differential equations in a Hilbert space. This method illustrates the ability of the reproducing kernel concept of the Hilbert space to approximate the solutions of second-order fuzzy Volterra integro-differential equations. Additionally, we discuss and derive the exact and approximate solutions in the form of Fourier series with effortlessly computable terms in the reproducing kernel Hilbert space W 3 2 [a, b] ⊕ W .3 2 [a, b]. The convergence of the method is proven and its exactness is illustrated by three numerical examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.