The 440C martensitic stainless steel is considered to be among the hardest steels, owing to its high carbon content. Careful heat treatment of this material introduces multiple carbide particles, which can alter microstructure and mechanical properties. This study focused on the effect of austenitisation temperature on the microstructure and tensile properties of 440C steel. Austenitisation was performed on the austenite + carbide region, because 440C steel lacks a single-phase region. The steel was austenitised at two different temperatures; namely, 1160 °C and 950 °C, and subjected to oil quenching. The as-quenched samples showed a typical lath martensite structure with retained austenite phase. The treatments at 1160 °C and 950 °C promoted the formation of M7C3 and M23C6 carbides, respectively. The austenite grains in the sample treated at 1160 °C showed a higher growth rate than those in the sample treated at 950 °C. The sample treated at 1160 °C showed low-fraction and a large-size carbide phase. The Zener pinning force decreased, thereby increasing the austenite grain growth in the sample treated at 1160 °C. The hardness and 0.2% proof stress of the sample treated at 950 °C were higher than those of the sample treated at 1160 °C, owing to the higher martensite content in the former. The strength–ductility balance of the sample treated at 950 °C was higher than that of the sample treated at 1160 °C. The decreased austenitisation temperature resulted in improved mechanical properties of the steel. Therefore, the austenitisation temperature alters the microstructure and mechanical properties of 440C steel.
Fuel cells are energy conversion devices that directly convert chemical energy of fuels such as hydrogen to useful work with negligible environmental impact and high efficiency. This study deals with thermodynamic analysis and modeling of polymer electrolyte membrane fuel cell (PEMFC) power systems for portable applications. In this regard, a case study of powering a computer with a PEMFC is presented. Also, an inclusive evaluation of various parameters such as voltage polarization, overall system efficiency, power output, and heat generation is reported. In addition, a parametric study is conducted to study the effect of many design and operation parameters on the overall efficiency. Results show the direct influence of current density and temperature values on optimization of the design parameters in PEMFCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.