In this article we tackle the problem of multi-party conversation summarization. We investigate the role of discourse segmentation of a conversation on meeting summarization. First, an unsupervised function segmentation algorithm is proposed to segment the transcript into functionally coherent parts, such asMonologuei(which indicates a segment where speakeriis the dominant speaker, e.g., lecturing all the other participants) orDiscussionx1x2, . . .,xn(which indicates a segment where speakersx1toxninvolve in a discussion). Then the salience score for a sentence is computed by leveraging the score of the segment containing the sentence. Performance of our proposed segmentation and summarization algorithms is evaluated using the AMI meeting corpus. We show better summarization performance over other state-of-the-art algorithms according to different metrics.
Over the years, detecting stable communities in a complex network has been a major challenge in network science. The global and local structures help to detect communities from different perspectives. However, previous methods based on them suffer from high complexity and fall into local optimum, respectively. The Four-Stage Algorithm (FSA) is proposed to reduce these issues and to allocate nodes to stable communities. Balancing global and local information, as well as accuracy and time complexity, while ensuring the allocation of nodes to stable communities, are the fundamental goals of this research. The Four-Stage Algorithm (FSA) is described and demonstrated using four real-world data with ground truth and three real networks without ground truth. In addition, it is evaluated with the results of seven community detection methods: Three-stage algorithm (TS), Louvain, Infomap, Fastgreedy, Walktrap, Eigenvector, and Label propagation (LPA). Experimental results on seven real network data sets show the effectiveness of our proposed approach and confirm that it is sufficiently capable of identifying those communities that are more desirable. The experimental results confirm that the proposed method can detect more stable and assured communities. For future work, deep learning methods can also be used to extract semantic content features that are more beneficial to investigating networks.
Keyphrases provide an extremely dense summary of a text. Such information can be used in many Natural Language Processing tasks, such as information retrieval and text summarization. Since previous studies on Persian keyword or keyphrase extraction have not published their data, the field suffers from the lack of a human extracted keyphrase dataset. In this paper, we introduce PerKey 1 , a corpus of 553k news articles from six Persian news websites and agencies with relatively high quality author extracted keyphrases, which is then filtered and cleaned to achieve higher quality keyphrases. The resulted data was put into human assessment to ensure the quality of the keyphrases. We also measured the performance of different supervised and unsupervised techniques, e.g. TFIDF, MultipartiteRank, KEA, etc. on the dataset using precision, recall, and F 1-score.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.