Transportation sector is one of the major producers of greenhouse gases which are responsible for climate change. Finding an appropriate emission estimation tool for large-scale networks is essential for developing efficient emission mitigation strategies. This paper presents an advanced version of the emission macroscopic fundamental diagram (e-MFD) which improves the stability and accuracy of the previous model. A bi-modal function is applied to separate free-flow and congested branches of the e-MFD. The accuracy of the proposed e-MFD is evaluated with both a synthetic grid network and a real-world city-level network. The study also assesses the model’s stability under directional traffic demands and road incidents. A comparison with the original e-MFD also verifies the superiority of the proposed model with higher accuracy. Standard deviation of density used in the proposed model to boost the performance. It is worth mentioning the standard deviation can be recorded with the existing hardware, such as loop detectors, and does not impose a considerable computational complexity. The proposed model can be employed for emission measurement in large-scale networks and hierarchical traffic control systems for more homogeneous congestion distribution and emission control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.