This paper reports for the first time the stabilization of soil using olivine and the application of novel techniques utilizing alkaline activation and carbonation. A rigorous study addressed the effect of carbon dioxide pressure and alkali concentration (10-M sodium hydroxide soil additions from 5 to 20%) between 7 and 90 days. Microstructural and compositional changes were evaluated using microscopic, spectroscopic, and diffraction techniques. Results demonstrate the advantages of using olivine in the presence of NaOH and the associated increases in soil shear strength of up to 40% over 90 days. Samples subjected to carbonation for a further 7 days led to additional increases in soil strength of up to 60%. Microstructural investigations before and after carbonation attributed the strength development to the formation of Mg(OH)2, hydrated magnesium carbonates, and M─S─H, A─S─H gel phases. The impact of this work is far reaching and provides a new soil stabilization approach. Key advantages include significant improvements in soil strength with a lower carbon footprint compared with lime or cement stabilization.
This study assesses the laboratory investigation to evaluate the feasibility of using alkaline activation technique for engineering improvement of soils. The originality of this paper stems from the novel two-stage approach. The first stage investigates the effectiveness of locally available precursor in the alkaline activation process by focusing on soil strength improvement. As such, in presence of high alkali solutes (Na-based and Ka-based alkaline activators), palm oil fuel ash (POFA) was used as a precursor due to its amorphous nature and high silica-toalumina ratio. In the second stage of this study, geotechnical model procedure of interaction between a strip footing model and stabilized soil by column technique and the most effective percentage of POFA was performed. According to the test results, applying alkaline activators to soil induced low strengths of up to 159 kPa after 7 days curing. When the POFA content used in alkaline activation increased from 0 to 15%, the UCS values increased up to 226% after similar curing duration. This assertion reflects the fact that the addition of POFA enriched the reactive Si and Al in the matrix, which allowed stronger Si-O-Si and Al-O-Si bonds to form. Curing condition, type and quantity of the alkaline activators were also shown to have significant strengthening effects on the treated soil. In this respect, the use of moderate 10 M NaOH and 10 M KOH were found to be viable as the best concentration for strength improvement of investigated soil when economy and practicality were considered. In terms of using alkali-activators, the use of the NaOH for soil treatment is beneficial in terms of lower cost, since the price of KOH solution is higher than that of the NaOH solution. Results of the second phase showed that a considerable settlement reduction up to 192% of treated columns by means of alkaline activation could be achieved.
This paper describes the first study demonstrating the potential of olivine as a soil stabiliser. Olivine has been shown to provide a reactive source of magnesium oxide capable of sequestering carbon dioxide. The effects of olivine additions on consistency limits, compaction characteristics and unconfined compressive strength (UCS) of soil are described. The effect of carbon dioxide pressure, and carbonation period, on the UCS of olivine-treated soil is of great importance in defining treated properties. Results highlight the benefits of olivine in soft soil stabilisation with reference to the UCS. Use of 20% olivine decreased the plasticity index and optimum moisture content while increasing the maximum dry density of the soil. The greatest strength was developed after carbonation at 200 kPa for 168 h in the soil containing 20% olivine. Structural and compositional analysis using scanning electron microscopy and X-ray diffraction confirmed the benefits of olivine in terms of decreasing the discontinuity of soil. This was attributed to the crystallisation products responsible for strength development after carbonation, respectively. The paper is significant as it presents a more environmentally friendly method of stabilising soils compared with alternative methods using high embodied energy binders such as cement.
This study addresses the use of alkali-activated binder to evaluate the feasibility of using this promising technique to stabilise soils. One of the well-known agro-wastes, palm oil fuel ash (POFA), was used as a source binder. Also, sodium hydroxide (NaOH) and potassium hydroxide (KOH) were used as alkaline activators. The influence of four factors including the kind of alkaline activator, the use of source binder, the curing condition and the water content of the soil on the strengthening performance of soil was evaluated according to the improvement of the unconfined compression strength (UCS). At the same alkaline concentration, both sodium hydroxide and potassium hydroxide were able to enhance the strength development rate of specimens. However, potassium hydroxide-POFA-stabilised soil yielded the highest UCS value following a long curing time (90 and 180 d of curing). The size and charge density of the alkaline activator play significant roles in controlling the rate and extent of the activation process for the strength performance. With regard to soil strength improvement, when the POFA content in the activation process increased from 0% to 15%, the UCS value increased substantially, irrespective of the alkaline activator type. This achievement implies a tremendous effect of this agro-waste on the strength behaviour of treated soil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.