Negative environmental impact of fossil fuel consumption highlight the role of renewable energy sources and give them a unique opportunity to grow and improve. Among renewable energy sources solar energy attract more attention and many studies have focused on using solar energy for electricity generation. Here, in this study, solar energy technologies are reviewed to find out the best option for electricity generation. Using solar energy to generate electricity can be done either directly and indirectly. In the direct method, PV modules are utilized to convert solar irradiation into electricity. In the indirect method, thermal energy is harnessed employing concentrated solar power (CSP) plants such as Linear Fresnel collectors and parabolic trough collectors. In this paper, solar thermal technologies including soar trough collectors, linear Fresnel collectors, central tower systems, and solar parabolic dishes are comprehensively reviewed and barriers and opportunities are discussed. In addition, a comparison is made between solar thermal power plants and PV power generation plants. Based on published studies, PV‐based systems are more suitable for small‐scale power generation. They are also capable of generating more electricity in a specific area in comparison with CSP‐based systems. However, based on economic considerations, CSP plants are better in economic return.
a b s t r a c tIn the recent years, numerous studies have been done on Stirling cycle and Stirling engine which have been resulted in different output power and engine thermal efficiency analyses. Finite speed thermodynamic analysis is one of the most prominent ways which considers external irreversibilities. In the present study, output power and engine thermal efficiency are optimized and total pressure losses are minimized using NSGA algorithm and finite speed thermodynamic analysis. The results are successfully verified against experimental data.
The present review paper aims to document the latest developments on the applications of nanofluids as working fluid in parabolic trough collectors (PTCs). The influence of many factors such as nanoparticles and base fluid type as well as volume fraction and size of nanoparticles on the performance of PTCs has been investigated. The reviewed studies were mainly categorized into three different types of experimental, modeling (semi-analytical), and computational fluid dynamics (CFD). The main focus was to evaluate the effect of nanofluids on thermal efficiency, entropy generation, heat transfer coefficient enhancement, as well as pressure drop in PTCs. It was revealed that nanofluids not only enhance (in most of the cases) the thermal efficiency, convection heat transfer coefficient, and exergy efficiency of the system but also can decrease the entropy generation of the system. The only drawback in application of nanofluids in PTCs was found to be pressure drop increase that can be controlled by optimization in nanoparticles volume fraction and mass flow rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.