Background
Efforts toward the development of an effective vaccine against Acinetobacter baumannii, one of the most notorious nosocomial pathogens, are still ongoing. In this regard, virulence factors are interesting targets. Type VI secretion system (T6SS) participates in the pathogenicity of A. baumannii. VgrG is a crucial component of T6SS prevalent among A. baumannii strains. This study was conducted to evaluate the immunoprotectivity of recombinant VgrG (rVgrG) cloned and over-expressed in Escherichia coli BL21 (DE3). BALB/c mice were immunized with the purified rVgrG. Specific anti-VgrG IgG titers were assessed by ELISA. Actively and passively immunized mice were challenged with lethal doses of A. baumannii ATCC 19606. The survival rate, the bacterial burden, and histopathology of tissues in infected mice were examined.
Results
Anti-VgrG IgG (p < 0.0001) was significantly increased in immunized mice. No death was seen in actively immunized mice infected with the lethal dose (LD) of 1.9 × 108 CFU of A. baumannii ATCC 19606 within 72 h. Challenge with 2.4 × 108 CFU of the pathogen showed a 75% survival rate. All immunized mice infected with 3.2 × 108 CFU of the pathogen died within 12 h. In passive immunization, no death was observed in mice that received LD of the bacteria incubated with the 1:250 dilution of the immune sera. An increased number of neutrophils around the peribronchial and perivascular areas were seen in unimmunized mouse lungs while passively immunized mice revealed moderate inflammation with infiltration of mixed mononuclear cells and neutrophils. The livers of the unimmunized mice showed inflammation and necrosis in contrast to the livers from immunized mice. Hyperplasia of the white pulp and higher neutrophils were evident in the spleen of unimmunized mice as against the normal histology of the immunized group.
Conclusions
VgrG is a protective antigen that could be topologically accessible to the host antibodies. Although VgrG is not sufficient to be assigned as a stand-alone antigen for conferring full protection, it could participate in multivalent vaccine developments for elevated efficacy.
Acinetobacter baumannii is the leading cause of nosocomial infection. A surface protein commonly known as biofilm associate protein (Bap) has been identified in a bloodstream isolate of A. baumannii. Bap of A. baumannii is involved in intercellular adhesion within the mature biofilm. Outer membrane protein Acinetobacter 87kDa (Oma87) or β-barrel assembly machinery A (BamA) has been introduced as an immunogenic outer membrane protein via in silico reverse vaccinology. The current research examines the synergistic effect of immunization of mice with both recombinant proteins viz., Oma87 and Bap. Antibodies were raised to the proteins. The mice were challenged with A. baumannii ATCC 19606 and the bacterial burden was enumerated in the mice’s livers, spleens, and lungs followed by histological examination. IgG levels significantly increased, and a significant (p < 0.0001) difference was observed between bacterial burdens in the internal organs of the actively and passively immunized groups. Female BALB/c mice weighing 20-25g, were divided into 4 groups of 14 mice each viz., control, Oma87, Bap, Oma87-Bap groups. The proteins were individually immunogenic, but the combination of both proteins had a synergistic protection property. This is further supported by the histological examination. Based on the results, the combination of Oma87 and Bap may be considered a promising vaccine candidate against A. baumannii.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.