In the past decade, assays that profile different aspects of the epigenome have grown exponentially in number and variation. However, standard guidelines for researchers to choose between available tools depending on their needs are lacking. Here, we introduce a comprehensive collection of the most commonly used bulk and single-cell epigenomic assays and compare and contrast their strengths and weaknesses. We summarize some of the most important technical and experimental parameters that should be considered for making an appropriate decision when designing epigenomic experiments.
Introduction:The aim of the present study was to examine the effects of a single bout of resistance exercise with low intensity of oxidative stress on male students who did not do any regular sports whatsoever. Materials and Methods: For this purpose, 16 untrained subjects with a mean age of 24.40 ± 1.7 years, height 176 ± 6.83 cm, weight 69.89 ± 6.6 and BMI 22.89 ± 0.89 kg/ m 2 , were studied pre and post a low intensity resistance exercise. The exercise protocol involved Scott and leg stretching for the lower limbs and stretch underarm and chest press for the upper limbs. The subjects performed each exercise 3 times (one minute rest between sets). The low-intensity test was performed in 25-30% of one repetition maximum (25 to 30 reps). Malondialdehyde (MDA) as an index of lipid peroxidation was measured before exercise, immediately after and 6 and 24 h after exercise. Results: Our data were analyzed using one factor repeated measures. Our results revealed a significant increase in MDA in response to low intensity resistance exercise at pre and post exercise time points in untrained subjects (P<0.05). The peak increase was observed at immediately post-exercise time point (P<0.0001, F=98.36) and the measures returned to resting values 24 hours after the test. Conclusion: Overall, resistance exercise, even though low-intense one appears to increase resistance oxidative stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.