Identification and management of the groundwater quality are of utmost importance for maintaining freshwater resources in arid and semi-arid areas, which is essential for sustainable development. Based on the quality of the groundwater in various areas, local policymakers and water resource managers can allocate the usage of resources for either drinking or agricultural purposes. This research aims to identify suitable areas of water pumping for drinking and agricultural harvest in the Tabriz aquifer, located in East Azerbaijan province, northwest Iran. A groundwater compatibility study was conducted by analyzing Electrical conductivity (EC), total dissolved solids (TDS), Chloride (Cl), Calcium (Ca), Magnesium (Mg), Sodium (Na), Potassium (K), Sulfate (SO4), Total hardness (TH), Bicarbonate (HCO3), pH, carbonate (CO3), the and Sodium Adsorption Ratio (SAR) obtained from 39 wells in the time period from 2003 to 2014. The Water Quality Index (WQI) and irrigation water quality (IWQ) index are respectively utilized due to their high importance in identifying the quality of water resources for irrigation and drinking purposes. The WQI index zoning for drinking classified water as excellent, good, or poor. The study concludes that most drinking water harvested for urban and rural areas is ‘excellent water’ or ‘good water’. The IWQ index average for the study area is reported to be in the range of 25.9 to 34.55. The results further revealed that about 37 percent (296 km2) of groundwater has high compatibility, and 63 percent of the study area (495 km2) has average compatibility for agricultural purposes. The trend of IWQ and WQI indexes demonstrates that groundwater quality has been declining over time.
The key goal of the current study was to determine suitable areas of water pumping for drinking and agricultural harvest in Tabriz aquifer, locateed in East Azerbaijan province, northwest Iran. In the study area, groundwater is the key foundation of water for drinking and farming requirements. Groundwater compatibility study was conducted by analysing Electrical conductivity (EC), Total dissolved solids (TDS), Chloride (Cl), Calcium (Ca), Magnesium (Mg), Sodium (Na), Potassium (K), Sulfate (SO4), Total hardness (TH), Bicarbonate (HCO3), pH, carbonate (CO3) and Sodium Adsorption Ratio (SAR) obtained from 39 wells in the period of 2003 to 2014. For this purpose, the Water Quality Index (WQI) and irrigation water quality (IWQ) index is respectively utilized. The WQI index zoning exposed that the groundwater of the study area for drinking purposes is categorized as excellent, good and poor water. Most drinking water harvested for urban and rural areas are in the class of "excellent water". IWQ index average for the study area was in the range of 25.9 to 34.55. The results revealed that about 37 percent (296 km2) of groundwater has high compatibility, and 63 percent of the study area (495 km2) has average compatibility for agricultural purposes. The trend of IWQ and WQI indexes demonstrates that the groundwater is getting worse over the time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.