Silver nanoparticles are extensive, applied in different fields. Green methods using plants have been used as renewable resources for the synthesis of biodegraded nanomaterials, thereby providing economic and safe synthesis routes. The green synthesis was done using the aqueous Cumin seed extract and as a bio-reducer agent and aqueous AgNO3 solution as a precursor under various conditions. The formation of silver nanoparticles was confirmed by the observation of the shift in color from colorless to dark brown. The synthesized AgNPs were characterized using UV/V is spectroscopy, XRD, FTIR, and SEM. Also, the synthesized AgNPs were evaluated for their antioxidant activity (In-vitro) by DPPH assay. The bio-reduced mixture showed a maximum peak at around 388nm. The XRD peaks were observed at 38o and 46o, corresponding to 111, 200, 220, and 311, and the peak widening suggested a smaller particle size. The FTIR absorption spectra indicated the presence of residual plant extract as a reducing agent in the reaction mixture. Also, analysis of C. cyminum seed extract strongly suggested the presence of OH stretching in alcoholic and phenolic compounds as the main phytochemicals parts, which is supported by a strong peak at approximately 3296cm−1. The SEM images clearly showed that AgNPs were almost spherical in shape and 48.7nm in size. The synthesized AgNPs showed almost the same pattern of ascorbic acid-free radical scavenging activity except at concentrations 100 and 50µg/ml with significant differences (P≤0.05) and it is dose-dependent. Silver nanoparticles can be synthesized on a large scale following a simple and eco-friendly method using C. cyminum seed extract that can be used as an effective antioxidant.
Background: Molecular docking has been used recently in pharma industry for drug designing, it’s a powerful tool to find ligand-substrate interactions at molecules level. Since urgent need to develop anti-viral drug that target new coronavirus main proteins, in silico docking has been used to achieve this purpose. Materials and Methods: Thirteen herbs are known for their antioxidants and antiviral properties have been selected to investigate their abilities in inhibiting SARS-COV2 spike protein and main protease Mpro. pdb files for RBD (Receptor Binding Domain) region of spike protein and for Mpro and mol2 files for all herbs understudy were uploaded for swiss dock online server, the docking results were analyzed using chimera software. Full fitness energy and hydrogens bonds interactions were considered for docking evaluation. Pharma kinetic properties for compounds have good binding results were evaluated through AMES and ADMET tests. Results: All compounds showed negative full fitness energy that means they are able to complex with both SARS-COV2 spike protein and main protease, however some of the herbs form very powerful hydrogen bonding with the RBD site of the spike protein and the catalytic site of Mpro such as coumarylquinic acid, while stigmasterol has strong binding with the spike protein only. Both compounds appear to be safe drugs for human according to AMES test results. Conclusion: Coumarylquinic acid and stigmasterol have powerful binding in silico, further in vitro studies include using viral infected human lung cells and testing above compounds ability for inhibiting viral entry and replication should be proceed to confirm the study results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.