An examination of the ability of machine learning methodologies in classifying women Waterpipe (WP) smoker's level of nicotine dependence is proposed in this work. In this study, we developed a classifier that predicts the level of nicotine dependence for WP tobacco female smokers using a set of novel features relevant to smokers including age, residency, and educational level. The evaluation results show that our approach achieves a recall of 82% when applied on a dataset of female WP smokers in Jordan.
<strong>Currently, cloud computing is facing different types of threats whether from inside or outside its environment. This may cause cloud to be crashed or at least unable to provide services to the requests made by clients. In this paper, a new technique is proposed to make sure that the new node which asks to join the cloud is not composing a threat on the cloud environment. Our new technique checks the node before it will be guaranteed to join the cloud whether it runs malwares or software that could be used to launch an attack. In this way the cloud will allow only the clean node to join it, eliminating the risk of some types of threats that could be caused by infected nodes.</strong>
Software testing is the main step of detecting the faults in Software through executing it. Therefore, it is substantial to predict the faults that may happen while executing the software to maintain the existence of the software. There are different techniques of artificial intelligence that are utilized to predict future defects. The Machine learning is one of the most significant technique that used to build predicting models. In this paper, conducted a systematic review of the supervised machine learning techniques which are used for software defect prediction and evaluated the performance. Thus, using five state-of-the-art supervised machine learning (classifiers), for the evaluation, several of the data are used to predict software fault. In addition to, compared the performance of these classifiers with various parameters. After that, proceeds many experiments to improve the efficiency of the prediction of the defect through modifying the default parameters of the classifier. The results showed the ability of supervised machine learning algorithms to classify classes as bugs or not bugs. Thus, using supervised machine learning models for predicting software bugs is better than the traditional statistical models. Additionally, using PCA never noticeable impact on prediction systems performance while modifying the default parameters positively impact classifier values, especially with Artificial Neural Network (ANN).The main finding of this paper is gained through the application of Ensemble Learning methods, whereas Bagging achieves 95.1% accuracy with Mozilla dataset and Voting achieves 93.79% accuracy with kc1 dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.