Electroencephalogram (EEG) is one of the most powerful tools that offer valuable information related to different abnormalities in the human brain. One of these abnormalities is the epileptic seizure. A framework is proposed for detecting epileptic seizures from EEG signals recorded from normal and epileptic patients. The suggested approach is designed to classify the abnormal signal from the normal one automatically. This work aims to improve the accuracy of epileptic seizure detection and reduce computational costs. To address this, the proposed framework uses the 54-DWT mother wavelets analysis of EEG signals using the Genetic algorithm (GA) in combination with other four machine learning (ML) classifiers: Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Artificial Neural Network (ANN), and Naive Bayes (NB). The performance of 14 different combinations of two-class epilepsy detection is investigated using these four ML classifiers. The experimental results show that the four classifiers produce comparable results for the derived statistical features from the 54-DWT mother wavelets; however, the ANN classifier achieved the best accuracy in most datasets combinations, and it outperformed the other examined classifiers. INDEX TERMS Electroencephalogram (EEG), discrete wavelet transform (DWT), epilepsy, artificial neural network, k-nearest neighbor (k-NN), support vector machine (SVM), naïve bayes (NB).
A highly efficient lightweight forward static slicing approach is presented and evaluated. The approach does not compute the program/system dependence graph but instead dependence and control information is computed as needed while computing the slice on a variable. The result is a list of line numbers, dependent variables, aliases, and function calls that are part of the slice for all variables (both local and global) for the entire system. The method is implemented as a tool, called srcSlice, on top of srcML, an XML representation of source code. The approach is highly scalable and can generate the slices for all variables of the Linux kernel in approximately 20 min on a typical desktop. Benchmark results are compared with the CodeSurfer slicing tool from GrammaTech Inc., and the approach compares well with regard to accuracy of slices.
Abstract-A case study of three open source systems undergoing large adaptive maintenance tasks is presented. The adaptive maintenance task involves migrating each system to a new version of a third party API. The changes to support the migration were spread out over multiple years for each system. The first two systems are both part of KDE, namely KOffice and Extragear/graphics. The adaptive maintenance task, for both systems, involves migrating to a new version of Qt. The third system is OpenSceneGraph that underwent a migration to a new version of OpenGL. The case study involves sifting through tens of thousands of commits to identify only those commits involved in the specific adaptive maintenance task. The object is to develop a data set that will be used for developing automated methods to identify/characterize adaptive maintenance commits.
Example-based transformational approaches to automate adaptive maintenance changes plays an important role in software research. One primary concern of those approaches is that a set of good qualified real examples of adaptive changes previously made in the history must be identified, or otherwise the adoption of such approaches will be put in question. Unfortunately, there is rarely enough detail to clearly direct transformation rule developers to overcome the barrier of finding qualified examples for adaptive changes. This work explores the histories of several open source systems to study the repetitiveness of adaptive changes in software evolution, and hence recognizing the source code change patterns that are strongly related with the adaptive maintenance. We collected the adaptive commits from the history of numerous open source systems, then we obtained the repetitiveness frequencies of source code changes based on the analysis of Abstract Syntax Tree (AST) edit actions within an adaptive commit. Using the prevalence of the most common adaptive changes, we suggested a set of change patterns that seem correlated with adaptive maintenance. It is observed that 76.93% of the undertaken adaptive changes were represented by 12 AST code differences. Moreover, only 9 change patterns covered 64.69% to 76.58% of the total adaptive change hunks in the examined projects. The most common individual patterns are related to initializing objects and method calls changes. A correlation analysis on examined projects shows that they have very similar frequencies of the patterns correlated with adaptive changes. The observed repeated adaptive changes could be useful examples for the construction of transformation approaches
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.