The evolving "Industry 4.0" domain encompasses a collection of future industrial developments with cyber-physical systems (CPS), Internet of things (IoT), big data, cloud computing, etc. Besides, the industrial Internet of things (IIoT) directs data from systems for monitoring and controlling the physical world to the data processing system. A major novelty of the IIoT is the unmanned aerial vehicles (UAVs), which are treated as an efficient remote sensing technique to gather data from large regions. UAVs are commonly employed in the industrial sector to solve several issues and help decision making. But the strict regulations leading to data privacy possibly hinder data sharing across autonomous UAVs. Federated learning (FL) becomes a recent advancement of machine learning (ML) which aims to protect user data. In this aspect, this study designs federated learning with blockchain assisted image classification model for clustered UAV networks (FLBIC-CUAV) on IIoT environment. The proposed FLBIC-CUAV technique involves three major processes namely clustering, blockchain enabled secure communication and FL based image classification. For UAV cluster construction process, beetle swarm optimization (BSO) algorithm with three input parameters is designed to cluster the UAVs for effective communication. In addition, blockchain enabled secure data transmission process take place to transmit the data from UAVs to cloud servers. Finally, the cloud server uses an FL with Residual Network model to carry out the image classification process. A wide range of simulation analyses takes place for ensuring the betterment of the FLBIC-CUAV approach. The experimental outcomes portrayed the betterment of the FLBIC-CUAV approach over the recent state of art methods.
A learning management system is a web-based software application that is used for the documentation, administration, tracking, reporting and delivery of training programs and educational courses. It is an efficient and effective way to give valuable information to the students in a short time. With the evolution of e-learning, the learning management system is widely adopted in the education sector as well as in corporate market. Thus, it became a valued target for attackers to focus their attacks on LMS platforms. Most of the popular learning management systems available now a day don't pay enough attention to the security mechanism and that gives opportunity to intruders to gain unauthorized access by manipulating the security gaps and breach into the system. The result is information leakage, unwanted data deletion or modification and compromised integrity of the data. The aim of this research paper is to focus on the need of security concerns and to provide a solution that can make the learning management system secure from any possible potential threats and attacks. In this paper, a complete multi-layered security model is proposed. The implementation of proposed model will provide a very secure environment for any learning management system.
In this article, a high-sensitive approach for detecting tampering attacks on transmitted Arabic-text over the Internet (HFDATAI) is proposed by integrating digital watermarking and hidden Markov model as a strategy for soft computing. The HFDATAI solution technically integrates and senses the watermark without modifying the original text. The alphanumeric mechanism order in the first stage focused on the Markov model key secret is incorporated into an automated, null-watermarking approach to enhance the proposed approach's efficiency, accuracy, and intensity. The first-level order and alphanumeric Markov model technique have been used as a strategy for soft computing to analyze the text of the Arabic language. In addition, the features of the interrelationship among text contexts and characteristics of watermark information extraction that is used later validated for detecting any tampering of the Arabic-text attacked. The HFDATAI strategy was introduced based on PHP with included IDE of VS code. Experiments of four separate duration datasets in random sites illustrate the fragility, efficacy, and applicability of HFDATAI by using the three common tampering attacks i.e., insertion, reorder, and deletion. The HFDATAI was found to be effective, applicable, and very sensitive for detecting any possible tampering on Arabic text.
In recent years, there has been an increasing demand to improve cellular communication services in several aspects. The aspect that received the most attention is improving the quality of coverage through using smart antennas which consist of array antennas. this paper investigates the main characteristics and design of the three types of array antennas of the base station for better coverage through simulation (MATLAB) which provides field and strength patterns measured in polar and rectangular coordinates for a variety of conditions including broadsides, ordinary End-fire, and increasing directivity End-fire which is typically used in smart antennas. The method of analysis was applied to twenty experiments of process design to each antenna type separately, so sixty results were obtained from the radiation pattern indicating the parameters for each radiation pattern. Moreover, nineteen design experiments were described in this section. It is hoped that the results obtained from this study will help engineers solve coverage problems as well as improve the quality of cellular communication networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.