This review presents the adsorptive removal process of hazardous materials onto carbon-based materials comprising activated carbon, graphene, carbon nanotubes, carbon nanofibers, biochar and carbon aerogels.
In the present research article we explore the synthesis method and adsorption capability of ZnFe oxides nanocomposites by using Pb as dopant. A conventional and simple batch adsorption method is selected and optimized. Pb@ZnFe2O4 NCs were fabricated by facile method i.e. co-precipitation method and characterized by FESEM, XRD, IR, EDX. The removal of dye has monitored by UV method.An outstanding result is obtained as adsorption efficiency of 1042 mg g−1 shows more significant performance than currently available bench-mark adsorbents. The optimized parameters pH 7.1, Adsorbent Mass: 50 mg, Initial Dye Concentration: 150 mg/l and Agitation Time: 90 min results in 96.49 % removal of CR (Congo red) dye. A CCD (central composite design) is applied to evaluate the role of adsorption variables. Based on its excellent performance, cost effectiveness, facile fabrication and large surface area, the Pb@ZnFe2O4 has considerable potential for the manufacture of cost effective and efficient adsorbents for environmental applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.