Interfacial properties of glycidyl methacrylate grafted ultra-high molecular weight polyethylene fibers and nano clay/epoxy resin were characterized by a microdroplet test.
Intensive selection of broilers for faster growth and better feed efficiency resulted in greater susceptibility to metabolic disorders such as ascites syndrome, which is one of the major causes of mortality and economic loss in broiler industry. Whereas cool temperature is one of the primary triggers for ascites, early feed restriction (FDR) significantly alleviates its incidence and mortality. However, little is known about effects of FDR, cold environmental temperature and their interaction on physiological responses in broiler chickens. For this purpose, 320 one-day-old male broilers were divided into two treatment groups of Ad libitum (Ad) and feed restricted (FR) with eight pen replicates each. Chickens in FR group underwent feed access limitation from days 7 to 14 of age. On day 21 half of the birds (four pens) in each group exposed to the cold temperature (CT) and the other half (four pens) continued at normal temperature (NT). Average daily feed intake, average daily weight gain and feed conversion ratio (FCR) were measured at days 7, 14, 21, 28 and 42. At 39 and 46 days of age two chicks with a BW around the pen average were selected from each pen and slaughtered after collecting blood samples. Then, relative weight of internal organs and right ventricle weight per total ventricle weight (RV : TV) ratio were calculated. Compared with NT group, CT birds had higher daily feed intake and FCR (P < 0.05) from day 28 to 42. Cumulative ascites mortality in CT chickens was higher (P < 0.001) than NT chicks. Within the CT group, ascites mortality in FR chickens was reduced (P < 0.001) to 1.25% compared with 8.75% in Ad chicks. Birds in CT group had significantly (P < 0.05) thicker right ventricle and greater relative weight of heart, hematocrit and triiodothyronine concentration. However, none of these parameters were affected by FDR. Under cold stress conditions, FDR reduced activity of alanine aminotransferase and aspartate aminotransferase (P < 0.05). Serum triglyceride, cholesterol, high-density lipoprotein and total protein were not influenced by either temperature or feeding regimen. In conclusion, these findings suggest that FDR reduces ascites incidence mainly by allowing better development of internal organs, which helps them to cope with the high metabolic pressure and suffer less damage.
Nonpolar structure of ultra-high molecular weight polyethylene fiber leads to a weak interfacial adhesion in ultra-high molecular weight polyethylene fiber reinforced epoxy composite. Herein, synchronized fiber and matrix modifications were utilized so as to improve the interfacial adhesion, resulting in promoting mechanical properties of these composites. For this purpose, the surface of ultra-high molecular weight polyethylene fiber was chemically treated with glycidyl methacrylate and the epoxy resin was modified through incorporation of different contents of nanoclay. The mechanical properties results showed that individual modification, either fiber or matrix, can just lead to improvements around 36.74% and 10.54% in tensile strength as well as 14.28% and 4.27% in tensile modulus, respectively. However, the ultimate outcome of the study revealed that much higher improvement can be achieved in synergistic attitude. The highest enhancement around 48.31% and 26.76% in tensile strength and modulus were seen for the sample containing glycidyl methacrylate-treated ultra-high molecular weight polyethylene fibers as reinforcement and nano epoxy modified with 1 wt.% of nanoclay. Such observation could be attributed to the mechanical interlocking and chemical reaction which were arising from incorporation of nanoclay in matrix and chemical treatment of fiber surface, correspondingly. In this regard, fiber roughness and chemical bonds formed between treated fiber and modified matrix play a key role in improving interfacial adhesion. Moreover, the fractured surface of such composites studied by scanning electron microscope confirmed the mechanical results and showed that much more matrix was adhered to the fiber surface after treatment, indicating cohesive failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.