Hair follicle stem cells (HFSCs) are able to differentiate into neurons and glial cells. Distinct microRNAs (miRNAs) regulate the proliferation and differentiation of HFSCs. However, the exact role of miR‐124 in the neural differentiation of HFSCs has not been elucidated. HFSCs were isolated from mouse whisker follicles. miR‐9, let‐7b, and miR‐124, Ptbp1 , and Sox9 expression levels were detected by real‐time polymerase chain reaction (RT‐PCR). The influence of miR‐124 transfection was evaluated using immunostaining. We demonstrated that miR‐124 and let‐7b expression levels were significantly increased after the neural differentiation. Sox9 and Ptbp1 were identified as the target of miR‐124 in the HFSCs. During neural differentiation and miR‐124 mimicking, Ptbp1 and Sox9 levels were decreased. Moreover, the miR‐124 overexpression increased MAP2 (58.43 ± 11.26) and NeuN (48.34 ± 11.15) proteins expression. The results demonstrated that miR‐124 may promote the differentiation of HFSCs into neuronal cells by targeting Sox9 and Ptbp1.
Selenium-as a trace element-is nutritionally essential for humans. It prevents cancerous growth by inhibiting the telomerase activity but the mechanism involved in regulation of telomerase activity in normal telomerase-positive cells remains to be elucidated. Here, we find out whether the effect of sodium selenite and selenomethionine on telomerase activity in human umbilical cord-derived mesenchymal stem cells (hUCMSCs) is associated with different levels of c-Myc and p53 expression. The use of different staining methods including ethidium bromide/acridine orange and DAPI in addition to telomeric repeat amplification protocol assay and real-time PCR indicated that different forms of selenium have opposite impacts on c-Myc and p53 expressions in both hUCMSCs and AGS, a gastric adenocarcinoma cell line, as a positive control. Our findings suggest that the signaling pathways involved in the regulation of telomerase activity in malignant and normal telomerase-positive cell types are somewhat different, at least on the c-Myc and P53 expression levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.