Earthquakes constitute one of the most powerful forces to which most civil engineering structures and historical constructions will ever be subjected; and thus designing and preserving structures to resist these forces is of utmost importance. The goal of earthquake-resistant design is to produce a structure or facility that can withstand a certain level of shaking without excessive damage. Seismic hazard analyses involve the quantitative estimation of ground shaking hazards at a particular site.
The main objective of this study is to develop a homogeneous earthquake catalogue for the low seismic region Warangal from 1800 to 2016 by considering a circular radius of 500 km. The catalogue is declustered using the algorithm proposed by Uhrhammer (1986) for removal of foreshocks and aftershocks. All the events have been converted to moment magnitude scale for homogenization. Completeness analysis has been carried out using the method proposed by Stepp (1972) to determine the time interval in which the data is complete over different magnitude ranges. The analysis shows that for the magnitude range of 3.0 ≤ M ≤ 3.49, 3.5 ≤ M ≤ 3.99, 4.0 ≤ M ≤ 4.49, 4.5 ≤ M ≤ 4.99, 5.0 ≤ M ≤ 5.49 and M > 5.49, the data is complete for the last 50 years (1967-2016), 60 years (1957-2016), 140 years (1867-2016) and 180 years (1837-2016) respectively. This study will provide a significant under-standing in distribution of earthquakes in Warangal region as well as the assessment of seismic hazard for the region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.