Abstract-This paper demonstrates a computer-aided diagnosis (CAD) system for lung cancer classification of CT scans with unmarked nodules, a dataset from the Kaggle Data Science Bowl, 2017. Thresholding was used as an initial segmentation approach to segment out lung tissue from the rest of the CT scan. Thresholding produced the next best lung segmentation. The initial approach was to directly feed the segmented CT scans into 3D CNNs for classification, but this proved to be inadequate. Instead, a modified U-Net trained on LUNA16 data (CT scans with labeled nodules) was used to first detect nodule candidates in the Kaggle CT scans. The U-Net nodule detection produced many false positives, so regions of CTs with segmented lungs where the most likely nodule candidates were located as determined by the U-Net output were fed into 3D Convolutional Neural Networks (CNNs) to ultimately classify the CT scan as positive or negative for lung cancer. The 3D CNNs produced a test set Accuracy of 86.6%. The performance of our CAD system outperforms the current CAD systems in literature which have several training and testing phases that each requires a lot of labeled data, while our CAD system has only three major phases (segmentation, nodule candidate detection, and malignancy classification), allowing more efficient training and detection and more generalizability to other cancers.
Background Writing composition is a significant factor for measuring test-takers’ ability in any language exam. However, the assessment (scoring) of these writing compositions or essays is a very challenging process in terms of reliability and time. The need for objective and quick scores has raised the need for a computer system that can automatically grade essay questions targeting specific prompts. Automated Essay Scoring (AES) systems are used to overcome the challenges of scoring writing tasks by using Natural Language Processing (NLP) and machine learning techniques. The purpose of this paper is to review the literature for the AES systems used for grading the essay questions. Methodology We have reviewed the existing literature using Google Scholar, EBSCO and ERIC to search for the terms “AES”, “Automated Essay Scoring”, “Automated Essay Grading”, or “Automatic Essay” for essays written in English language. Two categories have been identified: handcrafted features and automatically featured AES systems. The systems of the former category are closely bonded to the quality of the designed features. On the other hand, the systems of the latter category are based on the automatic learning of the features and relations between an essay and its score without any handcrafted features. We reviewed the systems of the two categories in terms of system primary focus, technique(s) used in the system, the need for training data, instructional application (feedback system), and the correlation between e-scores and human scores. The paper includes three main sections. First, we present a structured literature review of the available Handcrafted Features AES systems. Second, we present a structured literature review of the available Automatic Featuring AES systems. Finally, we draw a set of discussions and conclusions. Results AES models have been found to utilize a broad range of manually-tuned shallow and deep linguistic features. AES systems have many strengths in reducing labor-intensive marking activities, ensuring a consistent application of scoring criteria, and ensuring the objectivity of scoring. Although many techniques have been implemented to improve the AES systems, three primary challenges have been identified. The challenges are lacking of the sense of the rater as a person, the potential that the systems can be deceived into giving a lower or higher score to an essay than it deserves, and the limited ability to assess the creativity of the ideas and propositions and evaluate their practicality. Many techniques have only been used to address the first two challenges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.