Graphene oxide/poly(amidoamine) (GO/PAMAM) nanocomposite adsorbed high quantities of congo red (CR) anionic dye in 0.1 M NaCl solution, with the maximum adsorption capacity of 198 mg·g−1. The kinetics and thermodynamics of adsorption were investigated to elucidate the effects of pH, temperature, shaking rate, ionic strength, and contact time. Kinetic data were analyzed by the KASRA model and the KASRA, ISO, and pore-diffusion equations. Adsorption adsorption isotherms were studied by the ARIAN model and the Henry, Langmuir, and Temkin equations. It was shown that adsorption sites of GO/PAMAM at experimental conditions were phenolic hydroxyl groups of GO sheets and terminal amine groups of PAMAM dendrimer. Analysis of kinetic data indicated that amine sites were located on the surface, and that hydroxyl sites were placed in the pores of adsorbent. CR molecules interacted with the adsorption sites via hydrogen bonds. The molecules were adsorbed firstly on the amine sites, and then on the internal hydroxyl sites. Adsorption kinetic parameters indicated that the interaction of CR to the –NH3+ sites was the rate-controlling step of adsorption of CR on this site and adsorption activation energies calculated for different parts of this step. On the other hand, kinetic parameters showed that the intraparticle diffusion was the rate-controlling step during the interaction of CR molecules to –OH sites and activation energy of this step was not calculable. Finally, the used GO/PAMAM was completely regenerated by using ethylenediamine.
Adsorption of Alizarin Red S (ARS) on graphene oxide/poly(amidoamine) (GO/PAMAM) was studied at different ARS initial concentrations, temperatures, pHs, shaking rates and contact times. Adsorption sites of GO/PAMAM were phenolic –OH (Ph) group of GO and amine groups (–NH2, –NH+ 3 and –NHR+2) of PAMAM dendrimer moieties of GO/PAMAM. At pH = 2 and 318 K, maximum adsorption capacity (qe,max) of the adsorbent was 1275.2 mg g–1 which is one of the highest capacity in the literature. Thus, GO/PAMAM in this work acted as a superadsorbent for ARS. At the incipient of adsorption, ARS– molecules were adsorbed on Ph sites that was reaction-controlled step, (Ea = 114.5 kJ mol–1). Adsorption of ARS–on the remaining sites was diffusion–controlled. In alkaline media, two other types of ARS molecules were identified during that were adsorbed on Ph and –NH+ 3 sites. Further increasing the pH of the solution, decreased the number these two sites and yielded a reduced adsorption capacity (qe,max). Methylene blue (MB), thionine (Th), pyronin Y (PY), acridine orange (AO), methyl blue (MEB) and janus green (JG) dyes were selectively separated from their mixtures with ARS molecules using GO/PAMAM at pH of 2. The used adsorbent was recycled fficiently by using ethylenediamine very fast.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.