A simple and rapid approach for detecting apurinic (AP) sites in DNA, based on direct stripping chronopotentiometric measurements of the adenine and guanine nucleobases at a graphite electrode is described. Tetrahydrofuranyl residues, lacking a nucleobase moiety, were utilized for designing the AP sites and were incorporated in 19-mer oligonucleotides. The change of adenine-to-guanine response ratio (A/G) in one-, two-or three-substituted adenosine residues for stable analogs of AP sites was exploited for electrochemical measurements of the adenine loss. The resulting A/G response ratio decreases linearly upon increasing the number of AP sites in the oligonucleotides; the values of A/G electrochemical signals were slightly enhanced when compared to the actual purine content. HPLC analysis of the released nucleobases confirmed that the sulfuric acid-induced oligonucleotide cleavage provides complete apurination and dissolution of the released nucleobases in aqueous solution. Additional experiments with mixtures of free nucleobases and purine nucleosides reveal that the larger A/G ratio observed in the electrochemical analysis of AP-site-containing oligomers is attributed to the influence of the acid and/or thermal decomposition products (particularly the sugar fragments). This study represents the first step in developing a simple and direct electrochemical assay of AP sites in single-stranded DNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.