We investigate, via perturbation analyses, the mechanisms of nonlinear resonant interaction of surface-interfacial waves with a rippled bottom in a two-layer density-stratified fluid. As in a one-layer fluid, three classes of Bragg resonances are found to exist if nonlinear interactions up to the third order in the wave/ripple steepness are considered. As expected, the wave system associated with the resonances is more complicated than that in a one-layer fluid. Depending on the specifics of the resonance condition, the resonance-generated wave may be a surface or internal mode and may be transmitted or reflected. At the second order, class I Bragg resonance occurs involving two surface and/or internal waves and one bottom-ripple component. The interaction of an incident surface/internal wave with the bottom ripple generates a new surface or internal wave that may propagate in the same or the opposite direction as the incident wave. At the third order, class II and III Bragg resonances occur involving resonant interactions of four wave/ripple components: two surface and/or internal waves and two bottom-ripple components for class II resonance; three surface and/or internal waves and one bottom-ripple components for class III resonance. As in class I resonance, the resonance-generated wave in class II resonance has the same frequency as that of the incident wave. For class III resonance, the frequency of the resonant wave is equal to the sum or difference of the two incident wave frequencies. We enumerate and represent, using Feynman-like diagrams, the possible cases and combinations for Bragg resonance up to the third order (in two dimensions). Analytical regular perturbation results are obtained and discussed for all three classes of Bragg resonances. These are valid for limited bottom patch lengths and initial/finite growth of the resonant waves. For long bottom patches, a uniformly valid solution using multiple scales is derived for class I resonance. A number of applications underscoring the importance and implication of these nonlinear resonances on the evolution of ocean waves are presented and discussed. For example, it is shown that three internal/surface waves co-propagating over bottom topography are resonant under a broad range of Bragg conditions. The present study provides the theoretical basis and understanding for the companion paper (Alam, Liu & Yue 2008), where a direct numerical solution for the general nonlinear problem is pursued.
In a two-layer density-stratified fluid it is known, due to Ball (J. Fluid Mech., vol. 19, 1964, p. 465), that two oppositely travelling surface waves may form a triad resonance with an interfacial wave. Ball claims ‘there are no other interactions’ between two surface waves and one interfacial wave. Contrary to this, here we present a new class of triad resonance that occurs between two co-propagating surface waves and one interfacial wave. While in Ball’s resonance the interfacial wave has a wavelength of about half of two surface waves, in the new resonance presented here the interfacial wave has a much higher wavelength compared to those of surface waves. This, together with the unidirectionality of the participant triplet, makes the realization of the new resonance more likely in real ocean scenarios. We further show, via theoretical analysis and direct simulation, that, unique to this new class of resonance, the triad inevitably undergoes a cascade of (near-) resonance interaction that spreads the energy of initial waves to a number of lower and higher harmonics. The significance of the resonance studied here is, particularly, more emphasized in the littoral zones, where the spectrum refracts toward a unidirectional wave train.
The fact that acoustic radiation from a violin at air-cavity resonance is monopolar and can be determined by pure volume change is used to help explain related aspects of violin design evolution. By determining the acoustic conductance of arbitrarily shaped sound holes, it is found that air flow at the perimeter rather than the broader sound-hole area dominates acoustic conductance, and coupling between compressible air within the violin and its elastic structure lowers the Helmholtz resonance frequency from that found for a corresponding rigid instrument by roughly a semitone. As a result of the former, it is found that as sound-hole geometry of the violin's ancestors slowly evolved over centuries from simple circles to complex f-holes, the ratio of inefficient, acoustically inactive to total sound-hole area was decimated, roughly doubling air-resonance power efficiency. F-hole length then slowly increased by roughly 30% across two centuries in the renowned workshops of Amati, Stradivari and Guarneri, favouring instruments with higher air-resonance power, through a corresponding power increase of roughly 60%. By evolution-rate analysis, these changes are found to be consistent with mutations arising within the range of accidental replication fluctuations from craftsmanship limitations with subsequent selection favouring instruments with higher air-resonance power.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.