Ultrasound-assisted extraction is a promising technique to obtain active compounds from plants with high efficiency. The present study was conducted in two sections. In the first phase, the effect of solvent type (methanol, ethanol, water, and water-ethanol (50 : 50, v/v)) on inulin extraction yield from burdock roots (Arctium lappa L.) was investigated by the conventional method. The second phase aim was to optimize the condition of inulin and phenolic compounds including sonication time (10–40 min), sonication temperature (40–70°C), and solid/solvent ratio (1 : 20–1:40 g/ml) using response surface methodology (RSM). The results demonstrated that the highest inulin efficiency was extracted by water in the conventional method, which is equal to 10.32%. The optimum conditions of ultrasound-assisted water extraction for independent variables including sonication time and temperature as well as solid/water ratio were 36.65 min, 55.48°C, and 1 : 35 g/ml, respectively, which were determined on the maximization of inulin and total phenol content and minimization of IC50. At this optimum condition, inulin yield, phenolic compounds, and IC50 were found to be 12.46%, 18.85 mg GA/g DW, and 549.85 µg/ml, respectively. Regarding the results of this research, ultrasound-assisted extraction can be used as an alternative to the conventional extraction methods in extracting bioactive compounds from medicinal plants because it may improve the mass transfer, reducing the extraction time and the solvent used.
Natural preservatives with high level of phenolic compounds, antioxidants and antimicrobial activities are used in mayonnaise to improve quality and safety due to their potential health benefits. Application of these compounds in production processes highlights many difficulties due to instability of their physical and chemical properties. Microencapsulation is used to address these restrictions. In this study, phenolic compounds from lemon waste were encapsulated with Persian gum (PG) and basil seed gum (BSG) as coating materials at different ratios (0:1, 1:0, and 1:1) at 15% (w/w) total biopolymer. We confirmed microencapsulation by scanning electron microscopy, and evaluate phenolic content, antioxidant activity, encapsulation efficiency, morphology, water solubility indexes, and water absorption indexes. Sample mayonnaise was prepared using microencapsulated polyphenols from lemon waste and extract (1,000 ppm of concentration), and control samples without extracts or microcapsules. All samples were subjected to chemical (measuring the peroxide, thiobarbituric acid, acidity, and color) and microbial (total count of microorganisms and
Escherichia coli
) analysis during 30 days of storage. BSG samples exhibited the highest antioxidant activity (61.19%) and encapsulation efficiency (70.72%), and PG/BSG microcapsules had the highest capability to prevent oxidative deterioration during storage. Addition of microcapsules led to increases in parameter b
*
and decreases in parameters a
*
and L
*
. In general, PG/BSG microcapsules were considered optimal samples for production of mayonnaise, since they prevented mayonnaise deterioration and exhibited antioxidant and antimicrobial properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.