In this study, the copper sulfide nanoparticles (CuS‐NPs) and the zinc oxide/zinc hydroxide nanoparticles ((ZnO/Zn(OH)2‐NPs) were synthesized by a simple and low‐cost method, and the synthesized nanoparticles were characterized and identified by UV–Vis, field emission scanning electron microscopy (FE‐SEM), transmission electron microscopy (TEM) and X‐ray diffraction (XRD). The antimicrobial activity of the CuS‐NPs and the ZnO/Zn(OH)2‐NPs were examined by broth dilution to determine the minimal inhibitory concentration (MIC) of antibacterial agent required to inhibit the growth of a pathogen and the minimum bactericidal concentration (MBC) required to kill a particular bacterium. Agar disc diffusion method was used to determine the zone of inhibition. The nanoparticles demonstrated potent antibacterial activity against Klebsiella pneumonia (ATCC 1827), Acinetobacter baumannii (ATCC 150504), Escherichia coli (ATCC 33218) and Staphylococcus aureus (ATCC 25293). Antifungal activity against Aspergillus oryzae (PTCC 5164) was also obtained. The data obtained from antimicrobial activities by broth dilution and agar disc diffusion methods exhibited the CuS‐NPs were more effective than the ZnO/Zn(OH)2‐NPs. A good correlation was observed between the data obtained by both methods.
The present study is devoted to prepare a new antibacterial and antifungal agent based on in situ-synthesized silver nanoparticles at room temperature using Rosmarinus officinalis (R. officinalis) leaf extract. The Ag-NPs characterization by UV-visible, SEM, TEM and XRD revealed that the particles sizes were in the range of 10-33 nm. In this study, hydroalcoholic extracts were used with ultrasonic method. Ultrasonication has recently received attention as a novel bioprocessing tool for process intensification in many areas of downstream processing. The antimicrobial activities of T. daenensis and S. marianum extracts with and without the presence of Ag-NPs were investigated at concentrations from 12.5 to 50 mg/mL against Staphylococcus aureus (S. aureus, Gram-positive organism) and Escherichia coli (E. coli, Gram-negative organism), and fungal strains were Aspergillus oryzae (A. oryzae) and Candida albicans (C. albicans). Antimicrobial activity determined using agar disc diffusion method revealed that the activities of Ag-NPs/T. daenensis were superior to Ag-NPs/S. marianum and extracts (T. daenensis and S. marianum). The medicinal plant extract can be used to synthesize the Ag-NPs as an eco-friendly and inexpensive method in large scale. The results showed that the prepared Ag-NPs/extracts as good antibacterial and antifungal agents can be potentially applied against rapidly increasing of antibiotic resistance.
The applicability of ZnS:Ni nanoparticles loaded on activated carbon derived from apple tree wood (ZnS:Ni-NPs-ACATW) for the adsorption of Methylene Blue (MB) and Janus Green B (JGB) dyes in single system from water solution has been described. The synthesized adsorbent characterized and identified by UV-Vis, FE-SEM, EDX, TEM, FTIR and XRD. The influences of operation parameters including initial MB or JGB concentration (9.0-33.0mgL), pH (4.0-10.0), extent of adsorbent (0.08-0.12g) and sonication time (4.0-8.0min) investigated and subsequently best operational condition optimized by central composite design (CCD) combined with response surface methodology (RSM) and desirability function (DF) using STATISTICA 10.0 software. At optimum conditions, maximum MB and JSB adsorption onto ZnS:Ni-NPs-ACATW, i.e. 99.57%±1.34 and 98.70%±2.01, respectively was achieved pH of 7.0, 0.11g adsorbent, 14 and 28mgL of MB and JSB concentration respectively and 8min sonication time. Experimental data were modelled by Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R) isotherms. Langmuir isotherm and monolayer adsorption capacity of MB and JSB was found to be 21.79 and 28.01mgg respectively. The regression results strongly support more contribution of pseudo-second-order model for more accurate and repeatable representation of kinetic data. These results reveal that ZnS:Ni-NPs-ACATW could be useful as agents to efficiently remove dyes (JGB and MB) from contaminated water and can be very well recommended for wastewater remediation and control of environmental pollution.
In recent years, gold nanoparticles (Au‐NPs) have been taken into consideration in nanomedicine due to their excellent biocompatibility, chemical stability and promising optical properties. In this research, podophyllotoxin conjugated with gold nanoparticles (Au‐NPs‐POT) was synthesized and the conjugation of POT with Au‐NPs was confirmed using scanning electron microscopy, mass spectrometry and Fourier transform infrared spectroscopy. The anticancer effects of the product on preclinical models of lung, colon and breast cancers were investigated using MTT test. The analyses showed a direct dose–response relationship. It was found that higher concentrations of POT have more positive effects on the inhibition of cancer cell growth. At POT concentrations of 1, 2.5, 5, 7.5, 10, 15 and 20 ng ml−1, approximately 50% of the growth of colorectal, lung and breast cancer cell lines was inhibited, while similar results were obtained in the presence of 1, 2, 3, 4 and 5 μg ml−1 Au‐NPs‐POT. Au‐NPs‐POT exhibited the lowest cytotoxicity due to the presence of POT. The anticancer feature of Au‐NPs‐POT proved the potential to develop better anticancer therapeutics and to open new avenues for treatment of cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.