We investigated the association of some environmental and economic factors and the global distribution indicators of the COVID-19 pandemic. Since the number of cases and deaths is higher in high-income countries located in higher latitudes and colder climates, further studies are required to shed light on this matter.
This ecological study investigated the association between COVID-19 distribution and air quality index (AQI), comorbidities and sociodemographic factors in the USA. The AQI factors included in the study are total AQI, ozone, carbon monoxide, sulfur dioxide, and nitrogen dioxide (NO 2). Other demographic, socioeconomic, and geographic variables were included as covariates. The correlations of COVID-19 variables-proportion of cases and deaths in each population, as well as case fatality rate with independent variables were determined by Pearson and Spearman correlation and multiple linear regression analyses. The results revealed that AQI-NO 2 , population density, longitude, gross domestic product per capita, median age, total death of disease, and pneumonia per population were significantly associated with the COVID-19 variables (P < 0.05). Air pollutants, especially NO 2 in the US case, could be addressed as an important factor linked with COVID-19 susceptibility and mortality.
Background Coronavirus disease 2019 (COVID-19) pandemic provided an opportunity for the environment to reduce ambient pollution despite the economic, social and health disruption to the world. The purpose of this study was to investigate the changes in the air quality indexes (AQI) in industrial, densely populated and capital cities in different countries of the world before and after 2020. In this ecological study, we used AQI obtained from the free available databases such as the World Air Quality Index (WAQI). Bivariate correlation analysis was used to explore the correlations between meteorological and AQI variables. Mean differences (standard deviation: SD) of AQI parameters of different years were tested using paired-sample t-test or Wilcoxon signed-rank test as appropriate. Multivariable linear regression analysis was conducted to recognize meteorological variables affecting the AQI parameters. Results AQI-PM2.5, AQI-PM10 and AQI-NO2 changes were significantly higher before and after 2020, simultaneously with COVID-19 restrictions in different cities of the world. The overall changes of AQI-PM2.5, AQI-PM10 and AQI-NO2 in 2020 were – 7.36%, – 17.52% and – 20.54% compared to 2019. On the other hand, these results became reversed in 2021 (+ 4.25%, + 9.08% and + 7.48%). In general, the temperature and relative humidity were inversely correlated with AQI-PM2.5, AQI-PM10 and AQI-NO2. Also, after adjusting for other meteorological factors, the relative humidity was inversely associated with AQI-PM2.5, AQI-PM10 and AQI-NO2 (β = − 1.55, β = − 0.88 and β = − 0.10, P < 0.01, respectively). Conclusions The results indicated that air quality generally improved for all pollutants except carbon monoxide and ozone in 2020; however, changes in 2021 have been reversed, which may be due to the reduction of some countries’ restrictions. Although this quality improvement was temporary, it is an important result for planning to control environmental pollutants.
Background Coronavirus disease 2019 (COVID-19) is now globally considered a serious economic, social and health threat. A wide range of health related factors including Body Mass Index (BMI) is reported to be associated with the disease. In the present study, we analyzed global databases to assess the correlation of BMI and cholesterol with the risk of COVID-19. Methods In this ecological study, we used age-standardized BMI and cholesterol levels as well as the incidence and mortality ratio of COVID-19 at the national-levels obtained from the publicly available databases such as the World Health Organization (WHO) and NCD Risk Factor Collaboration (NCD-RisC). Bivariate correlation analysis was applied to assess the correlations between the study variables. Mean differences (standard deviation: SD) of BMI and cholesterol levels of different groups were tested using independent sample t-test or Mann–Whitney rank test as appropriate. Multivariable linear regression analysis was performed to identify variables affecting the incidence and mortality ratio of COVID-19. Results Incidence and mortality ratio of COVID-19 were significantly higher in developed (29,639.85 ± 20,210.79 for cases and 503.24 ± 414.65 for deaths) rather than developing (8153.76 ± 11,626.36 for cases and 169.95 ± 265.78 for deaths) countries (P < 0.01). Results indicated that the correlations of BMI and cholesterol level with COVID-19 are stronger in countries with younger population. In general, the BMI and cholesterol level were positively correlated with COVID-19 incidence ratio (β = 2396.81 and β = 30,932.80, p < 0.01, respectively) and mortality ratio (β = 38.18 and β = 417.52, p < 0.05, respectively) after adjusting for socioeconomic and demographic factors. Conclusion Countries with higher BMI or cholesterol at aggregate levels had a higher ratios of COVID-19 incidence and mortality. The aggregated level of cholesterol and BMI are important risk factors for COVID-19 major outcomes, especially in developing countries with younger populations. We recommend monitoring and promotion of health indicices to better prevent morbidity and mortality of COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.