Reprints and permissions information is available at http://www.nature.com/reprints.
IMPORTANCE Parkinson disease (PD) is a highly prevalent and incurable neurodegenerative disease associated with the accumulation of misfolded α-synuclein (αSyn) aggregates. An important problem in this disease is the lack of a sensitive, specific, and noninvasive biochemical diagnosis to help in clinical evaluation, monitoring of disease progression, and early differential diagnosis from related neurodegenerative diseases. OBJECTIVE To develop a novel assay with high sensitivity and specificity to detect small quantities of αSyn aggregates circulating in cerebrospinal fluid (CSF) of patients affected by PD and related synucleinopathies. DESIGN, SETTING, AND PARTICIPANTS The strategy evaluated in this proof-of-concept study uses the protein misfolding cyclic amplification (PMCA) technology that detects minute amounts of misfolded oligomers by taking advantage of their ability to nucleate further aggregation, enabling a very high amplification of the signal. The technology was first adapted with synthetic αSyn oligomers prepared in vitro and used to screen in 2 blinded cohorts of CSF samples from German and Japanese patients with PD (n = 76) and individuals serving as controls affected by other neurologic disorders (n = 65), neurodegenerative diseases (n = 18), and Alzheimer disease (n = 14). The kinetics of αSyn aggregation were measured by αSyn-PMCA in the presence of CSF samples from the participants to detect αSyn oligomeric seeds present in this biological fluid. The assays were conducted from November 15, 2013, to August 28, 2015. MAIN OUTCOMES AND MEASURES Kinetic parameters correlated with disease severity at the time of sample collection, measured by the Hoehn and Yahr scale, with the lowest grade indicating unilateral involvement with minimal or no functional impairment, and the highest grade defining patients with complete confinement to wheelchair or bed. RESULTS Studies with synthetic αSyn aggregates showed that αSyn-PMCA enabled to detect as little as 0.1 pg/mL of αSyn oligomers. The αSyn-PMCA signal was directly proportional to the amount of αSyn oligomers added to the reaction. A blinded study of CSF samples correctly identified patients affected by PD with an overall sensitivity of 88.5% (95% CI, 79.2%-94.6%) and specificity of 96.9% (95% CI, 89.3%-99.6%). The αSyn-PMCA results for different patients correlated with the severity of the clinical symptoms of PD (Japanese cohort: r s = −0.54, P = .006; German cohort: r s = −0.36, P = .02). CONCLUSIONS AND RELEVANCE The findings suggest that detection of αSyn oligomers by αSyn-PMCA in the CSF of patients affected by PD may offer a good opportunity for a sensitive and specific biochemical diagnosis of the disease. Further studies are needed to investigate the usefulness of αSyn-PMCA to monitor disease progression and for preclinical identification of patients who may develop PD.
Covid-19 has caused significant distress around the globe. Apart from the evident physical symptoms in infected cases, it has caused serious damage to public mental health. India, like other countries, implemented a nationwide lockdown to contain and curb the transmission of the virus. The current research is an attempt to explore psychological distress among people residing in India during the lockdown. Four hundred and three participants were asked to complete a questionnaire with questions around symptoms of depression, anxiety, stress, and family affluence. The results indicated that people who do not have enough supplies to sustain the lockdown were most affected, and family affluence was found to be negatively correlated with stress, anxiety, and depression. Among different professions, students and healthcare professionals were found to experience stress, anxiety, and depression more than others. Despite the current situation, stress, anxiety, and depression were found to be in normal ranges for mental health professionals highlighting their capabilities to remain normal in times of distress. Policymakers and other authorities may take the assistance of mental health professionals to help overcome psychological issues related to
Background PD diagnosis is based primarily on clinical criteria and can be inaccurate. Biological markers, such as α‐synuclein aggregation, that reflect ongoing pathogenic processes may increase diagnosis accuracy and allow disease progression monitoring. Though α‐synuclein aggregation assays have been published, reproducibility, standardization, and validation are key challenges for their development as clinical biomarkers. Objective To cross‐validate two α‐synuclein seeding aggregation assays developed to detect pathogenic oligomeric α‐synuclein species in CSF using samples from the same PD patients and healthy controls from the BioFIND cohort. Methods CSF samples were tested by two independent laboratories in a blinded fashion. BioFIND features standardized biospecimen collection of clinically typical moderate PD patients and nondisease controls. α‐synuclein aggregation was measured by protein misfolding cyclic amplification (Soto lab) and real‐time quaking‐induced conversion (Green lab). Results were analyzed by an independent statistician. Results Measuring 105 PD and 79 healthy control CSF samples, these assays showed 92% concordance. The areas under the curve from receiver operating characteristic curve analysis for the diagnosis of PD versus healthy controls were 0.93 for protein misfolding cyclic amplification, 0.89 for real‐time quaking‐induced conversion, and 0.95 when considering only concordant assay results. Clinical characteristics of false‐positive and ‐negative subjects were not different from true‐negative and ‐positive subjects, respectively. Conclusions These α‐synuclein seeding aggregation assays are reliable and reproducible for PD diagnosis. Assay parameters did not correlate with clinical parameters, including disease severity or duration. This assay is highly accurate for PD diagnosis and may impact clinical practice and clinical trials. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Numerous epidemiological studies have shown a significantly higher risk for development of Alzheimer’s disease (AD) in patients affected by type 2 diabetes (T2D), but the molecular mechanism responsible for this association is presently unknown. Both diseases are considered protein misfolding disorders associated to the accumulation of protein aggregates; amyloid-beta (Aβ) and tau in the brain during AD, and islet amyloid polypeptide (IAPP) in pancreatic islets in T2D. Formation and accumulation of these proteins follows a seeding-nucleation model, where a misfolded aggregate or “seed” promotes the rapid misfolding and aggregation of the native protein. Our underlying hypothesis is that misfolded IAPP produced in T2D potentiates AD pathology by cross-seeding Aβ, providing a molecular explanation for the link between these diseases. Here, we examined how misfolded IAPP affects Aβ aggregation and AD pathology in vitro and in vivo. We observed that addition of IAPP seeds accelerates Aβ aggregation in vitro in a seeding-like manner and the resulting fibrils are composed of both peptides. Transgenic animals expressing both human proteins exhibited exacerbated AD-like pathology compared to AD transgenic mice or AD transgenic animals with type-1 diabetes (T1D). Remarkably, IAPP colocalized with amyloid plaques in brain parenchymal deposits, suggesting these peptides may directly interact and aggravate the disease. Furthermore, inoculation of pancreatic IAPP aggregates into the brains of AD transgenic mice resulted in more severe AD pathology and significantly greater memory impairments than untreated animals. This data provides a proof-of-concept for a new disease mechanism involving the interaction of misfolded proteins through cross-seeding events which may contribute to accelerate or exacerbate disease pathogenesis. Our findings could shed light on understanding the linkage between T2D and AD, two of the most prevalent protein misfolding disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.