These results support the hypothesis that an oxidant-antioxidant imbalance, associated with oxidative stress in COPD patients, plays an important role in the progression of disease severity.
CONTEXT:Asthma is a chronic airway disorder which is associated to the inflammatory cells. Inflammatory and immune cells generate more reactive oxygen species in patients suffering from asthma which leads to tissue injury. AIMS:To investigate the role of oxidant-antioxidant imbalance in disease progression of asthmatic patients.SETTINGS AND DESIGN:In this study, 130 asthmatic patients and 70 healthy controls were documented.METHODS:For this malondialdehyde level, total protein carbonyls, sulfhydryls, activity of superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), total blood glutathione, and total antioxidant capacity (FRAP) were measured.STATISTICAL ANALYSIS USED:Analysis of the data was done using unpaired student t test and one-way ANOVA analysis. P < 0.05 was considered significant.RESULTS:The present work showed that the systemic levels of MDA (4.19 ± 0.10 nmol/ml, P < 0.001) and protein carbonyls (1.13 ± 0.02 nmol/mg, P < 0.001) were found to be remarkably higher in asthmatic patients while protein sulfhydryls (0.55 ± 0.01 mmol/l, P < 0.05) decreased as compared to controls (2.84 ± 0.12 nmol/ml, 0.79 ± 0.02 nmol/mg and 0.60 ± 0.02 mmol/l, respectively). We also observed decrease in activities of SOD (2047 ± 50.34 U/g Hb, P < 0.05), catalase (4374 ± 67.98 U/g Hb, P < 0.01), and GPx (40.97 ± 1.05 U/g Hb, P < 0.01) in erythrocytes compared to control (2217 ± 60.11 U/g Hb, 4746 ± 89.94 U/g Hb, and 48.37 ± 2.47 U/g Hb, respectively). FRAP level (750.90 ± 21.22 μmol/l, P < 0.05) in plasma was decreased, whereas total blood glutathione increased (0.94 ± 0.02 mmol/l, P < 0.05) as seen in control (840.40 ± 28.39 μmol/l and 0.84 ± 0.04 mmol/l).CONCLUSIONS:This work supports and describes the hypothesis that an imbalance between oxidant-antioxidant is associated to the oxidative stress which plays a significant role in severity of the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.