Light-fidelity (LiFi) is a networked optical wireless communication (OWC) solution for high-speed indoor connectivity for fixed and mobile optical communications. Unlike conventional radio frequency wireless systems, the OWC channel is not isotropic, meaning that the device orientation affects the channel gain significantly, particularly for mobile users. However, due to the lack of a proper model for device orientation, many studies have assumed that the receiver is vertically upward and fixed. In this paper, a novel model for device orientation based on experimental measurements of 40 participants has been proposed. It is shown that the probability density function (PDF) of the polar angle can be modeled either based on a Laplace (for static users) or a Gaussian (for mobile users) distribution. In addition, a closed-form expression is obtained for the PDF of the cosine of the incidence angle based on which the line-of-sight (LOS) channel gain is described in OWC channels. An approximation of this PDF based on the truncated Laplace is proposed and the accuracy of this approximation is confirmed by the Kolmogorov-Smirnov distance. Moreover, the statistics of the LOS channel gain are calculated and the random orientation of a user equipment (UE) is modeled as a random process. The influence of the random orientation on signal-to-noise-ratio performance of OWC systems has been evaluated. Finally, an orientationbased random waypoint (ORWP) mobility model is proposed by considering the random orientation of the UE during the user's movement. The performance of ORWP is assessed on the handover rate and it is shown that it is important to take the random orientation into account.
The nucleosome, the fundamental packing unit of chromatin, has a distinct chirality: 147 bp of DNA are wrapped around the core histones in a left-handed, negative superhelix. It has been suggested that this chirality has functional significance, particularly in the context of the cellular processes that generate DNA supercoiling, such as transcription and replication. However, the impact of torsion on nucleosome structure and stability is largely unknown. Here we perform a detailed investigation of single nucleosome behavior on the high affinity 601 positioning sequence under tension and torque using the angular optical trapping technique. We find that torque has only a moderate effect on nucleosome unwrapping. In contrast, we observe a dramatic loss of H2A/H2B dimers upon nucleosome disruption under positive torque, while (H3/H4)2 tetramers are efficiently retained irrespective of torsion. These data indicate that torque could regulate histone exchange during transcription and replication.
Optical trapping is a powerful manipulation and measurement technique widely employed in the biological and materials sciences1–8. Miniaturizing optical trap instruments onto optofluidic platforms holds promise for high throughput lab-on-chip applications9–16. However, a persistent challenge with existing optofluidic devices has been controlled and precise manipulation of trapped particles. Here we report a new class of on-chip optical trapping devices. Using photonic interference functionalities, an array of stable, three-dimensional on-chip optical traps is formed at the antinodes of a standing-wave evanescent field on a nanophotonic waveguide. By employing the thermo-optic effect via integrated electric microheaters, the traps can be repositioned at high speed (~ 30 kHz) with nanometer precision. We demonstrate sorting and manipulation of individual DNA molecules. In conjunction with laminar flows and fluorescence, we also show precise control of the chemical environment of a sample with simultaneous monitoring. Such a controllable trapping device has the potential for high-throughput precision measurements on chip.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.